凸多面体上切割轨迹的实现

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Joseph O'Rourke , Costin Vîlcu
{"title":"凸多面体上切割轨迹的实现","authors":"Joseph O'Rourke ,&nbsp;Costin Vîlcu","doi":"10.1016/j.comgeo.2023.102010","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every positively weighted tree <em>T</em> can be realized as the cut locus <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of a point <em>x</em><span> on a convex polyhedron </span><em>P</em>, with <em>T</em> edge weights matching <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> edge lengths. If <em>T</em> has <em>n</em> leaves, <em>P</em> has (in general) <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span><span> vertices. We show there is in fact a continuum of polyhedra </span><em>P</em> each realizing <em>T</em> for some <span><math><mi>x</mi><mo>∈</mo><mi>P</mi></math></span>. Three main tools in the proof are properties of the star unfolding of <em>P</em>, Alexandrov's gluing theorem, and a new cut-locus partition lemma. The construction of <em>P</em> from <em>T</em> is surprisingly simple.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cut locus realizations on convex polyhedra\",\"authors\":\"Joseph O'Rourke ,&nbsp;Costin Vîlcu\",\"doi\":\"10.1016/j.comgeo.2023.102010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every positively weighted tree <em>T</em> can be realized as the cut locus <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of a point <em>x</em><span> on a convex polyhedron </span><em>P</em>, with <em>T</em> edge weights matching <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> edge lengths. If <em>T</em> has <em>n</em> leaves, <em>P</em> has (in general) <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span><span> vertices. We show there is in fact a continuum of polyhedra </span><em>P</em> each realizing <em>T</em> for some <span><math><mi>x</mi><mo>∈</mo><mi>P</mi></math></span>. Three main tools in the proof are properties of the star unfolding of <em>P</em>, Alexandrov's gluing theorem, and a new cut-locus partition lemma. The construction of <em>P</em> from <em>T</em> is surprisingly simple.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772123000305\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000305","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了每一个正加权树T都可以实现为凸多面体P上点x的切割轨迹C(x),其中T的边权重与C(x)的边长度相匹配。如果T有n个叶子,则P(通常)有n+1个顶点。我们证明了事实上存在一个多面体P的连续体,每个多面体P对一些x∈P实现T。证明中的三个主要工具是P的星展开性质、Alexandrov的粘合定理和一个新的割轨迹配分引理。从T构造P的过程非常简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cut locus realizations on convex polyhedra

We prove that every positively weighted tree T can be realized as the cut locus C(x) of a point x on a convex polyhedron P, with T edge weights matching C(x) edge lengths. If T has n leaves, P has (in general) n+1 vertices. We show there is in fact a continuum of polyhedra P each realizing T for some xP. Three main tools in the proof are properties of the star unfolding of P, Alexandrov's gluing theorem, and a new cut-locus partition lemma. The construction of P from T is surprisingly simple.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信