Yojana Gadiya , Philip Gribbon , Martin Hofmann-Apitius , Andrea Zaliani
{"title":"药物专利景观:一种从药物发现角度理解专利的新方法","authors":"Yojana Gadiya , Philip Gribbon , Martin Hofmann-Apitius , Andrea Zaliani","doi":"10.1016/j.ailsci.2023.100069","DOIUrl":null,"url":null,"abstract":"<div><p>Patents play a crucial role in the drug discovery process by providing legal protection for discoveries and incentivising investments in research and development. By identifying patterns within patent data resources, researchers can gain insight into the market trends and priorities of the pharmaceutical and biotechnology industries, as well as provide additional perspectives on more fundamental aspects such as the emergence of potential new drug targets. In this paper, we used the patent enrichment tool, PEMT, to extract, integrate, and analyse patent literature for rare diseases (RD) and Alzheimer's disease (AD). This is followed by a systematic review of the underlying patent landscape to decipher trends and applications in patents for these diseases. To do so, we discuss prominent organisations involved in drug discovery research in AD and RD. This allows us to gain an understanding of the importance of AD and RD from specific organisational (pharmaceutical or university) perspectives. Next, we analyse the historical focus of patents in relation to individual therapeutic targets and correlate them with market scenarios allowing the identification of prominent targets for a disease. Lastly, we identified drug repurposing activities within the two diseases with the help of patents. This resulted in identifying existing repurposed drugs and novel potential therapeutic approaches applicable to the indication areas. The study demonstrates the expanded applicability of patent documents from legal to drug discovery, design, and research, thus, providing a valuable resource for future drug discovery efforts. Moreover, this study is an attempt towards understanding the importance of data underlying patent documents and raising the need for preparing the data for machine learning-based applications.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmaceutical patent landscaping: A novel approach to understand patents from the drug discovery perspective\",\"authors\":\"Yojana Gadiya , Philip Gribbon , Martin Hofmann-Apitius , Andrea Zaliani\",\"doi\":\"10.1016/j.ailsci.2023.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Patents play a crucial role in the drug discovery process by providing legal protection for discoveries and incentivising investments in research and development. By identifying patterns within patent data resources, researchers can gain insight into the market trends and priorities of the pharmaceutical and biotechnology industries, as well as provide additional perspectives on more fundamental aspects such as the emergence of potential new drug targets. In this paper, we used the patent enrichment tool, PEMT, to extract, integrate, and analyse patent literature for rare diseases (RD) and Alzheimer's disease (AD). This is followed by a systematic review of the underlying patent landscape to decipher trends and applications in patents for these diseases. To do so, we discuss prominent organisations involved in drug discovery research in AD and RD. This allows us to gain an understanding of the importance of AD and RD from specific organisational (pharmaceutical or university) perspectives. Next, we analyse the historical focus of patents in relation to individual therapeutic targets and correlate them with market scenarios allowing the identification of prominent targets for a disease. Lastly, we identified drug repurposing activities within the two diseases with the help of patents. This resulted in identifying existing repurposed drugs and novel potential therapeutic approaches applicable to the indication areas. The study demonstrates the expanded applicability of patent documents from legal to drug discovery, design, and research, thus, providing a valuable resource for future drug discovery efforts. Moreover, this study is an attempt towards understanding the importance of data underlying patent documents and raising the need for preparing the data for machine learning-based applications.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318523000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318523000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pharmaceutical patent landscaping: A novel approach to understand patents from the drug discovery perspective
Patents play a crucial role in the drug discovery process by providing legal protection for discoveries and incentivising investments in research and development. By identifying patterns within patent data resources, researchers can gain insight into the market trends and priorities of the pharmaceutical and biotechnology industries, as well as provide additional perspectives on more fundamental aspects such as the emergence of potential new drug targets. In this paper, we used the patent enrichment tool, PEMT, to extract, integrate, and analyse patent literature for rare diseases (RD) and Alzheimer's disease (AD). This is followed by a systematic review of the underlying patent landscape to decipher trends and applications in patents for these diseases. To do so, we discuss prominent organisations involved in drug discovery research in AD and RD. This allows us to gain an understanding of the importance of AD and RD from specific organisational (pharmaceutical or university) perspectives. Next, we analyse the historical focus of patents in relation to individual therapeutic targets and correlate them with market scenarios allowing the identification of prominent targets for a disease. Lastly, we identified drug repurposing activities within the two diseases with the help of patents. This resulted in identifying existing repurposed drugs and novel potential therapeutic approaches applicable to the indication areas. The study demonstrates the expanded applicability of patent documents from legal to drug discovery, design, and research, thus, providing a valuable resource for future drug discovery efforts. Moreover, this study is an attempt towards understanding the importance of data underlying patent documents and raising the need for preparing the data for machine learning-based applications.
Artificial intelligence in the life sciencesPharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)