Farzana R. Chowdhury , Peirong (Slade) Wang , Pengfei (Taylor) Li
{"title":"基于拥塞感知的交叉口异构互联自动化车辆协同调度问题","authors":"Farzana R. Chowdhury , Peirong (Slade) Wang , Pengfei (Taylor) Li","doi":"10.1080/15472450.2021.1990053","DOIUrl":null,"url":null,"abstract":"<div><p>More and more vehicles are connected today via emerging connected and automated vehicle (CAV) technologies. An intriguing application of CAVs is to cross intersections without stops through cooperative scheduling by traffic control infrastructure. Nonetheless, with the increase of CAVs’ requests for green, two problems will surface: (I) accommodating too many CAVs’ green requests will generate severe interruptions to general traffic; (II) simple scheduling policies like first-come-first serve is inappropriate due to heterogeneous importance of CAVs. To overcome these challenges, we present a mixed-integer linear programming (MILP) formulation for congestion-aware heterogeneous CAV scheduling problems at intersections in this paper. The objective is to ensure that intensive and heterogeneous green requests by CAVs can be scheduled at intersections while the mobility of background traffic is still maintained. The MILP formulation is developed in the context of discrete space-time and phase-time networks whose variables are space-time arc choice variables with respect to individual vehicles and phase-time arc choice variables. We also build an efficient search algorithm based on the “A-D curves” for real-time applications. Three experiments are conducted to validate the proposed MILP formulation and search algorithm. The simulation-based performance evaluation for the congestion-aware CAV scheduling reveal promising results for real-world applications in the future.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 1","pages":"Pages 111-126"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Congestion-aware heterogeneous connected automated vehicles cooperative scheduling problems at intersections\",\"authors\":\"Farzana R. Chowdhury , Peirong (Slade) Wang , Pengfei (Taylor) Li\",\"doi\":\"10.1080/15472450.2021.1990053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>More and more vehicles are connected today via emerging connected and automated vehicle (CAV) technologies. An intriguing application of CAVs is to cross intersections without stops through cooperative scheduling by traffic control infrastructure. Nonetheless, with the increase of CAVs’ requests for green, two problems will surface: (I) accommodating too many CAVs’ green requests will generate severe interruptions to general traffic; (II) simple scheduling policies like first-come-first serve is inappropriate due to heterogeneous importance of CAVs. To overcome these challenges, we present a mixed-integer linear programming (MILP) formulation for congestion-aware heterogeneous CAV scheduling problems at intersections in this paper. The objective is to ensure that intensive and heterogeneous green requests by CAVs can be scheduled at intersections while the mobility of background traffic is still maintained. The MILP formulation is developed in the context of discrete space-time and phase-time networks whose variables are space-time arc choice variables with respect to individual vehicles and phase-time arc choice variables. We also build an efficient search algorithm based on the “A-D curves” for real-time applications. Three experiments are conducted to validate the proposed MILP formulation and search algorithm. The simulation-based performance evaluation for the congestion-aware CAV scheduling reveal promising results for real-world applications in the future.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"27 1\",\"pages\":\"Pages 111-126\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245022003930\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022003930","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Congestion-aware heterogeneous connected automated vehicles cooperative scheduling problems at intersections
More and more vehicles are connected today via emerging connected and automated vehicle (CAV) technologies. An intriguing application of CAVs is to cross intersections without stops through cooperative scheduling by traffic control infrastructure. Nonetheless, with the increase of CAVs’ requests for green, two problems will surface: (I) accommodating too many CAVs’ green requests will generate severe interruptions to general traffic; (II) simple scheduling policies like first-come-first serve is inappropriate due to heterogeneous importance of CAVs. To overcome these challenges, we present a mixed-integer linear programming (MILP) formulation for congestion-aware heterogeneous CAV scheduling problems at intersections in this paper. The objective is to ensure that intensive and heterogeneous green requests by CAVs can be scheduled at intersections while the mobility of background traffic is still maintained. The MILP formulation is developed in the context of discrete space-time and phase-time networks whose variables are space-time arc choice variables with respect to individual vehicles and phase-time arc choice variables. We also build an efficient search algorithm based on the “A-D curves” for real-time applications. Three experiments are conducted to validate the proposed MILP formulation and search algorithm. The simulation-based performance evaluation for the congestion-aware CAV scheduling reveal promising results for real-world applications in the future.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.