科恩保护和独立

Pub Date : 2023-08-01 DOI:10.1016/j.apal.2023.103291
Vera Fischer, Corey Bacal Switzer
{"title":"科恩保护和独立","authors":"Vera Fischer,&nbsp;Corey Bacal Switzer","doi":"10.1016/j.apal.2023.103291","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a general preservation theorem for preserving selective independent families along countable support iterations. The theorem gives a general framework for a number of results in the literature concerning models in which the independence number <span><math><mi>i</mi></math></span> is strictly below <span><math><mi>c</mi></math></span>, including iterations of Sacks forcing, Miller partition forcing, <em>h</em>-perfect tree forcings, coding with perfect trees. Moreover, applying the theorem, we show that <span><math><mi>i</mi><mo>=</mo><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in the Miller Lite model. An important aspect of the preservation theorem is the notion of “Cohen preservation”, which we discuss in detail.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohen preservation and independence\",\"authors\":\"Vera Fischer,&nbsp;Corey Bacal Switzer\",\"doi\":\"10.1016/j.apal.2023.103291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a general preservation theorem for preserving selective independent families along countable support iterations. The theorem gives a general framework for a number of results in the literature concerning models in which the independence number <span><math><mi>i</mi></math></span> is strictly below <span><math><mi>c</mi></math></span>, including iterations of Sacks forcing, Miller partition forcing, <em>h</em>-perfect tree forcings, coding with perfect trees. Moreover, applying the theorem, we show that <span><math><mi>i</mi><mo>=</mo><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in the Miller Lite model. An important aspect of the preservation theorem is the notion of “Cohen preservation”, which we discuss in detail.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223000489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个在可数支持迭代中保持选择性独立族的一般保持定理。该定理为文献中关于独立数i严格低于c的模型的许多结果提供了一个通用框架,包括萨克斯强制、米勒分区强制、h-完美树强制、用完美树编码的迭代。此外,应用该定理,我们证明了=ℵMiller Lite型号中的1。保存定理的一个重要方面是“科恩保存”的概念,我们对此进行了详细讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cohen preservation and independence

We provide a general preservation theorem for preserving selective independent families along countable support iterations. The theorem gives a general framework for a number of results in the literature concerning models in which the independence number i is strictly below c, including iterations of Sacks forcing, Miller partition forcing, h-perfect tree forcings, coding with perfect trees. Moreover, applying the theorem, we show that i=1 in the Miller Lite model. An important aspect of the preservation theorem is the notion of “Cohen preservation”, which we discuss in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信