集成数据的平行坐标图

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Elif E. Firat , Ben Swallow , Robert S. Laramee
{"title":"集成数据的平行坐标图","authors":"Elif E. Firat ,&nbsp;Ben Swallow ,&nbsp;Robert S. Laramee","doi":"10.1016/j.visinf.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>The Parallel Coordinate Plot (PCP) is a complex visual design commonly used for the analysis of high-dimensional data. Increasing data size and complexity may make it challenging to decipher and uncover trends and outliers in a confined space. A dense PCP image resulting from overlapping edges may cause patterns to be covered. We develop techniques aimed at exploring the relationship between data dimensions to uncover trends in dense PCPs. We introduce correlation glyphs in the PCP view to reveal the strength of the correlation between adjacent axis pairs as well as an interactive glyph lens to uncover links between data dimensions by investigating dense areas of edge intersections. We also present a subtraction operator to identify differences between two similar multivariate data sets and relationship-guided dimensionality reduction by collapsing axis pairs. We finally present a case study of our techniques applied to ensemble data and provide feedback from a domain expert in epidemiology.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"7 1","pages":"Pages 56-65"},"PeriodicalIF":3.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCP-Ed: Parallel coordinate plots for ensemble data\",\"authors\":\"Elif E. Firat ,&nbsp;Ben Swallow ,&nbsp;Robert S. Laramee\",\"doi\":\"10.1016/j.visinf.2022.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Parallel Coordinate Plot (PCP) is a complex visual design commonly used for the analysis of high-dimensional data. Increasing data size and complexity may make it challenging to decipher and uncover trends and outliers in a confined space. A dense PCP image resulting from overlapping edges may cause patterns to be covered. We develop techniques aimed at exploring the relationship between data dimensions to uncover trends in dense PCPs. We introduce correlation glyphs in the PCP view to reveal the strength of the correlation between adjacent axis pairs as well as an interactive glyph lens to uncover links between data dimensions by investigating dense areas of edge intersections. We also present a subtraction operator to identify differences between two similar multivariate data sets and relationship-guided dimensionality reduction by collapsing axis pairs. We finally present a case study of our techniques applied to ensemble data and provide feedback from a domain expert in epidemiology.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"7 1\",\"pages\":\"Pages 56-65\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22001085\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22001085","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

平行坐标图(PCP)是一种复杂的可视化设计,通常用于分析高维数据。不断增加的数据大小和复杂性可能会使在有限空间中破译和发现趋势和异常值变得具有挑战性。由重叠边缘产生的密集PCP图像可能导致图案被覆盖。我们开发了旨在探索数据维度之间关系的技术,以揭示密集PCP的趋势。我们在PCP视图中引入了相关性字形,以揭示相邻轴对之间的相关性强度,并通过研究边缘交叉的密集区域,引入了交互式字形透镜,以揭示数据维度之间的联系。我们还提出了一种减法算子来识别两个相似的多变量数据集之间的差异,并通过折叠轴对来进行关系引导的降维。最后,我们介绍了一个应用于集合数据的技术案例研究,并提供了流行病学领域专家的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCP-Ed: Parallel coordinate plots for ensemble data

The Parallel Coordinate Plot (PCP) is a complex visual design commonly used for the analysis of high-dimensional data. Increasing data size and complexity may make it challenging to decipher and uncover trends and outliers in a confined space. A dense PCP image resulting from overlapping edges may cause patterns to be covered. We develop techniques aimed at exploring the relationship between data dimensions to uncover trends in dense PCPs. We introduce correlation glyphs in the PCP view to reveal the strength of the correlation between adjacent axis pairs as well as an interactive glyph lens to uncover links between data dimensions by investigating dense areas of edge intersections. We also present a subtraction operator to identify differences between two similar multivariate data sets and relationship-guided dimensionality reduction by collapsing axis pairs. We finally present a case study of our techniques applied to ensemble data and provide feedback from a domain expert in epidemiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信