图卷积网络的批处理虚拟对抗训练

Zhijie Deng , Yinpeng Dong , Jun Zhu
{"title":"图卷积网络的批处理虚拟对抗训练","authors":"Zhijie Deng ,&nbsp;Yinpeng Dong ,&nbsp;Jun Zhu","doi":"10.1016/j.aiopen.2023.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>We present batch virtual adversarial training (BVAT), a novel regularization method for graph convolutional networks (GCNs). BVAT addresses the issue that GCNs do not ensure the smoothness of the model’s output distribution against local perturbations around the input node features. We propose two algorithms, sampling-based BVAT and optimization-based BVAT, which promote the output smoothness of GCN classifiers based on the generated virtual adversarial perturbations for either a subset of independent nodes or all nodes via an elaborate optimization process. Extensive experiments on three citation network datasets <em>Cora</em>, <em>Citeseer</em> and <em>Pubmed</em> and a knowledge graph dataset <em>Nell</em> validate the efficacy of the proposed method in semi-supervised node classification tasks.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 73-79"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Batch virtual adversarial training for graph convolutional networks\",\"authors\":\"Zhijie Deng ,&nbsp;Yinpeng Dong ,&nbsp;Jun Zhu\",\"doi\":\"10.1016/j.aiopen.2023.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present batch virtual adversarial training (BVAT), a novel regularization method for graph convolutional networks (GCNs). BVAT addresses the issue that GCNs do not ensure the smoothness of the model’s output distribution against local perturbations around the input node features. We propose two algorithms, sampling-based BVAT and optimization-based BVAT, which promote the output smoothness of GCN classifiers based on the generated virtual adversarial perturbations for either a subset of independent nodes or all nodes via an elaborate optimization process. Extensive experiments on three citation network datasets <em>Cora</em>, <em>Citeseer</em> and <em>Pubmed</em> and a knowledge graph dataset <em>Nell</em> validate the efficacy of the proposed method in semi-supervised node classification tasks.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"4 \",\"pages\":\"Pages 73-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651023000098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

我们提出了批量虚拟对抗性训练(BVAT),这是一种用于图卷积网络(GCN)的新的正则化方法。BVAT解决了GCN不能确保模型输出分布的平滑性以对抗输入节点特征周围的局部扰动的问题。我们提出了两种算法,基于采样的BVAT和基于优化的BVAT,它们通过精心设计的优化过程,基于生成的独立节点子集或所有节点的虚拟对抗性扰动,提高了GCN分类器的输出平滑性。在三个引文网络数据集Cora、Citeseer和Pubmed以及一个知识图数据集Nell上进行的大量实验验证了所提出的方法在半监督节点分类任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Batch virtual adversarial training for graph convolutional networks

We present batch virtual adversarial training (BVAT), a novel regularization method for graph convolutional networks (GCNs). BVAT addresses the issue that GCNs do not ensure the smoothness of the model’s output distribution against local perturbations around the input node features. We propose two algorithms, sampling-based BVAT and optimization-based BVAT, which promote the output smoothness of GCN classifiers based on the generated virtual adversarial perturbations for either a subset of independent nodes or all nodes via an elaborate optimization process. Extensive experiments on three citation network datasets Cora, Citeseer and Pubmed and a knowledge graph dataset Nell validate the efficacy of the proposed method in semi-supervised node classification tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信