{"title":"2019冠状病毒病疫情对印度西南部卡拉马纳河流域地表水理化参数的封城调控:加权算术指数和地统计学视角","authors":"S.P. Prasood , M.V. Mukesh , K.S. Sajinkumar , K.P. Thrivikramji","doi":"10.1016/j.totert.2023.100042","DOIUrl":null,"url":null,"abstract":"<div><p>The coronavirus disease or COVID-19 pandemic continues imposing restrictions on the human population from full-scale normal/routine activities all over the world. This study primarily spotlights the consequences of the COVID-19-pandemic-lockdown on physicochemical parameters of water (samples) of the Karamana river system (KRS) during the pre-monsoons (or January) of 2021 and 2022, using the Weighted Arithmetic Index method and Geostatistical analysis (ArcMap 10.2). Even though the Karamana river supported the water needs of the people during the past several decades, the quality of water deteriorated due to the rising population and consequent anthropogenic activities. Hence, it is imperative to evaluate the water quality during the post-COVID-19 lockdowns and document the spatial distribution of parameters listed in the BIS (Bureau of Indian standard) IS10500, 2012. This was accomplished by establishing a water quality index (WQI), Geostatistical analysis, and weighted overlay analysis (WOA). The estimated WQI suggested that about 45.11km<sup>2</sup> (6.43%) area has declined from the excellent category of water quality between 2021 and 2022. Similarly, WOA results deciphered that the area under the poor category has drastically and negatively changed from 27.85 km<sup>2</sup> (4.0%) to 60.42 km<sup>2</sup> (8.6%) after revoking of lockdown restrictions. The lessons learned from syn-Covid-19, the spike or uptrend of the water quality compared to the past decades, offer ample scientific basis to policymakers, administrators, and environmentalists for restoration of river system health from huge anthropogenic stress.</p></div>","PeriodicalId":101255,"journal":{"name":"Total Environment Research Themes","volume":"6 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COVID-19 pandemic lockdown modulation of physico-chemical parameters of surface water, Karamana river basin, Southwest India: A weighted arithmetic index and geostatistical perspective\",\"authors\":\"S.P. Prasood , M.V. Mukesh , K.S. Sajinkumar , K.P. Thrivikramji\",\"doi\":\"10.1016/j.totert.2023.100042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coronavirus disease or COVID-19 pandemic continues imposing restrictions on the human population from full-scale normal/routine activities all over the world. This study primarily spotlights the consequences of the COVID-19-pandemic-lockdown on physicochemical parameters of water (samples) of the Karamana river system (KRS) during the pre-monsoons (or January) of 2021 and 2022, using the Weighted Arithmetic Index method and Geostatistical analysis (ArcMap 10.2). Even though the Karamana river supported the water needs of the people during the past several decades, the quality of water deteriorated due to the rising population and consequent anthropogenic activities. Hence, it is imperative to evaluate the water quality during the post-COVID-19 lockdowns and document the spatial distribution of parameters listed in the BIS (Bureau of Indian standard) IS10500, 2012. This was accomplished by establishing a water quality index (WQI), Geostatistical analysis, and weighted overlay analysis (WOA). The estimated WQI suggested that about 45.11km<sup>2</sup> (6.43%) area has declined from the excellent category of water quality between 2021 and 2022. Similarly, WOA results deciphered that the area under the poor category has drastically and negatively changed from 27.85 km<sup>2</sup> (4.0%) to 60.42 km<sup>2</sup> (8.6%) after revoking of lockdown restrictions. The lessons learned from syn-Covid-19, the spike or uptrend of the water quality compared to the past decades, offer ample scientific basis to policymakers, administrators, and environmentalists for restoration of river system health from huge anthropogenic stress.</p></div>\",\"PeriodicalId\":101255,\"journal\":{\"name\":\"Total Environment Research Themes\",\"volume\":\"6 \",\"pages\":\"Article 100042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Total Environment Research Themes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772809923000199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Total Environment Research Themes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772809923000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COVID-19 pandemic lockdown modulation of physico-chemical parameters of surface water, Karamana river basin, Southwest India: A weighted arithmetic index and geostatistical perspective
The coronavirus disease or COVID-19 pandemic continues imposing restrictions on the human population from full-scale normal/routine activities all over the world. This study primarily spotlights the consequences of the COVID-19-pandemic-lockdown on physicochemical parameters of water (samples) of the Karamana river system (KRS) during the pre-monsoons (or January) of 2021 and 2022, using the Weighted Arithmetic Index method and Geostatistical analysis (ArcMap 10.2). Even though the Karamana river supported the water needs of the people during the past several decades, the quality of water deteriorated due to the rising population and consequent anthropogenic activities. Hence, it is imperative to evaluate the water quality during the post-COVID-19 lockdowns and document the spatial distribution of parameters listed in the BIS (Bureau of Indian standard) IS10500, 2012. This was accomplished by establishing a water quality index (WQI), Geostatistical analysis, and weighted overlay analysis (WOA). The estimated WQI suggested that about 45.11km2 (6.43%) area has declined from the excellent category of water quality between 2021 and 2022. Similarly, WOA results deciphered that the area under the poor category has drastically and negatively changed from 27.85 km2 (4.0%) to 60.42 km2 (8.6%) after revoking of lockdown restrictions. The lessons learned from syn-Covid-19, the spike or uptrend of the water quality compared to the past decades, offer ample scientific basis to policymakers, administrators, and environmentalists for restoration of river system health from huge anthropogenic stress.