{"title":"非对称性能多核处理器上偷工特征并行程序的性能评价","authors":"Adnan","doi":"10.1016/j.array.2023.100311","DOIUrl":null,"url":null,"abstract":"<div><p>The speed difference between high-performance CPUs and energy-efficient CPUs, which are found in asymmetric performance multicore processors, affects the current form of Amdahl’s law equation. This paper proposes two updates to that equation based on the performance evaluation results of a simple parallel pi program written with OpenCilk. Performance evaluation was done by measuring execution time and instructions per cycle (IPC). The performance evaluation of the parallel program executed on the Intel Core i5 1240P processor did not indicate decreased performance due to asymmetric performance. Instead, the program with efficient work-stealing advantages from OpenCilk performed well. In the case of using the execution time of the P-CPU as a reference to obtain speedup, the evaluation results in a sublinear speedup. Conversely, in the case of using the execution time of the E-CPU as a reference, the evaluation results in a superlinear speedup. This paper proposes two updates to Amdahl’s law equation based on these two evaluation results.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation on work-stealing featured parallel programs on asymmetric performance multicore processors\",\"authors\":\"Adnan\",\"doi\":\"10.1016/j.array.2023.100311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The speed difference between high-performance CPUs and energy-efficient CPUs, which are found in asymmetric performance multicore processors, affects the current form of Amdahl’s law equation. This paper proposes two updates to that equation based on the performance evaluation results of a simple parallel pi program written with OpenCilk. Performance evaluation was done by measuring execution time and instructions per cycle (IPC). The performance evaluation of the parallel program executed on the Intel Core i5 1240P processor did not indicate decreased performance due to asymmetric performance. Instead, the program with efficient work-stealing advantages from OpenCilk performed well. In the case of using the execution time of the P-CPU as a reference to obtain speedup, the evaluation results in a sublinear speedup. Conversely, in the case of using the execution time of the E-CPU as a reference, the evaluation results in a superlinear speedup. This paper proposes two updates to Amdahl’s law equation based on these two evaluation results.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259000562300036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000562300036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Performance evaluation on work-stealing featured parallel programs on asymmetric performance multicore processors
The speed difference between high-performance CPUs and energy-efficient CPUs, which are found in asymmetric performance multicore processors, affects the current form of Amdahl’s law equation. This paper proposes two updates to that equation based on the performance evaluation results of a simple parallel pi program written with OpenCilk. Performance evaluation was done by measuring execution time and instructions per cycle (IPC). The performance evaluation of the parallel program executed on the Intel Core i5 1240P processor did not indicate decreased performance due to asymmetric performance. Instead, the program with efficient work-stealing advantages from OpenCilk performed well. In the case of using the execution time of the P-CPU as a reference to obtain speedup, the evaluation results in a sublinear speedup. Conversely, in the case of using the execution time of the E-CPU as a reference, the evaluation results in a superlinear speedup. This paper proposes two updates to Amdahl’s law equation based on these two evaluation results.