平面五次毕达哥拉斯曲线空间的划分

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Rida T. Farouki
{"title":"平面五次毕达哥拉斯曲线空间的划分","authors":"Rida T. Farouki","doi":"10.1016/j.cagd.2023.102242","DOIUrl":null,"url":null,"abstract":"<div><p>The quintics are the lowest–order planar Pythagorean–hodograph (PH) curves suitable for free–form design, since they can exhibit inflections. A quintic PH curve <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> may be constructed from a complex quadratic pre–image polynomial <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> by integration of <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and it thus incorporates (modulo translations) six real parameters — the real and imaginary parts of the coefficients of <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span>. Within this 6–dimensional space of planar PH quintics, a 5–dimensional hypersurface separates the inflectional and non–inflectional curves. Points of the hypersurface identify exceptional curves that possess a tangent–continuous point of infinite curvature, corresponding to the fact that the parabolic locus specified by the quadratic pre–image polynomial </span><span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> passes through the origin of the complex plane. Correspondingly, extreme curvatures and tight loops on <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> are incurred by a close proximity of </span><span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> to the origin of the complex plane. These observations provide useful insight into the disparate shapes of the four distinct PH quintic solutions to the first–order Hermite interpolation problem.</span></p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"106 ","pages":"Article 102242"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partition of the space of planar quintic Pythagorean-hodograph curves\",\"authors\":\"Rida T. Farouki\",\"doi\":\"10.1016/j.cagd.2023.102242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The quintics are the lowest–order planar Pythagorean–hodograph (PH) curves suitable for free–form design, since they can exhibit inflections. A quintic PH curve <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> may be constructed from a complex quadratic pre–image polynomial <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> by integration of <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and it thus incorporates (modulo translations) six real parameters — the real and imaginary parts of the coefficients of <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span>. Within this 6–dimensional space of planar PH quintics, a 5–dimensional hypersurface separates the inflectional and non–inflectional curves. Points of the hypersurface identify exceptional curves that possess a tangent–continuous point of infinite curvature, corresponding to the fact that the parabolic locus specified by the quadratic pre–image polynomial </span><span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> passes through the origin of the complex plane. Correspondingly, extreme curvatures and tight loops on <span><math><mi>r</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> are incurred by a close proximity of </span><span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> to the origin of the complex plane. These observations provide useful insight into the disparate shapes of the four distinct PH quintic solutions to the first–order Hermite interpolation problem.</span></p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"106 \",\"pages\":\"Article 102242\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839623000742\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839623000742","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

五次曲线是适用于自由形式设计的最低阶平面毕达哥拉斯速度图(PH)曲线,因为它们可以表现出屈折。五次PH曲线r(t)可以由复二次图像前多项式w(t)通过r′(t)=w2(t)的积分来构建,因此它包含(模平移)六个实参数——w(t的系数的实部和虚部。在平面PH五次曲面的6维空间中,5维超曲面将弯曲曲线和非弯曲曲线分开。超曲面的点识别出具有无限曲率的切线-连续点的特殊曲线,对应于二次图像前多项式w(t)指定的抛物线轨迹穿过复平面原点的事实。相应地,r(t)上的极端曲率和紧环是由w(t)与复平面原点的紧密接近引起的。这些观察结果为一阶Hermite插值问题的四个不同的PH五次解的不同形状提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partition of the space of planar quintic Pythagorean-hodograph curves

Partition of the space of planar quintic Pythagorean-hodograph curves

The quintics are the lowest–order planar Pythagorean–hodograph (PH) curves suitable for free–form design, since they can exhibit inflections. A quintic PH curve r(t) may be constructed from a complex quadratic pre–image polynomial w(t) by integration of r(t)=w2(t), and it thus incorporates (modulo translations) six real parameters — the real and imaginary parts of the coefficients of w(t). Within this 6–dimensional space of planar PH quintics, a 5–dimensional hypersurface separates the inflectional and non–inflectional curves. Points of the hypersurface identify exceptional curves that possess a tangent–continuous point of infinite curvature, corresponding to the fact that the parabolic locus specified by the quadratic pre–image polynomial w(t) passes through the origin of the complex plane. Correspondingly, extreme curvatures and tight loops on r(t) are incurred by a close proximity of w(t) to the origin of the complex plane. These observations provide useful insight into the disparate shapes of the four distinct PH quintic solutions to the first–order Hermite interpolation problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信