一个代数变量的临界曲率度

Pub Date : 2023-08-16 DOI:10.1016/j.jsc.2023.102259
Emil Horobeţ
{"title":"一个代数变量的临界曲率度","authors":"Emil Horobeţ","doi":"10.1016/j.jsc.2023.102259","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we study the complexity involved in the computation of the reach in arbitrary dimension and in particular the computation of the critical spherical curvature points of an arbitrary algebraic variety. We present properties of the critical spherical curvature points as well as an algorithm for computing them.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The critical curvature degree of an algebraic variety\",\"authors\":\"Emil Horobeţ\",\"doi\":\"10.1016/j.jsc.2023.102259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we study the complexity involved in the computation of the reach in arbitrary dimension and in particular the computation of the critical spherical curvature points of an arbitrary algebraic variety. We present properties of the critical spherical curvature points as well as an algorithm for computing them.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了计算任意维度的可达性所涉及的复杂性,特别是计算任意代数变体的临界球面曲率点。我们给出了临界球面曲率点的性质以及计算它们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The critical curvature degree of an algebraic variety

In this article we study the complexity involved in the computation of the reach in arbitrary dimension and in particular the computation of the critical spherical curvature points of an arbitrary algebraic variety. We present properties of the critical spherical curvature points as well as an algorithm for computing them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信