极大各向同性格拉斯曼子的通用方程

Pub Date : 2023-08-16 DOI:10.1016/j.jsc.2023.102260
Tim Seynnaeve, Nafie Tairi
{"title":"极大各向同性格拉斯曼子的通用方程","authors":"Tim Seynnaeve,&nbsp;Nafie Tairi","doi":"10.1016/j.jsc.2023.102260","DOIUrl":null,"url":null,"abstract":"<div><p>The isotropic Grassmannian parametrizes isotropic subspaces of a vector space equipped with a quadratic form. In this paper, we show that any maximal isotropic Grassmannian in its Plücker embedding can be defined by pulling back the equations of <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> or <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal equations for maximal isotropic Grassmannians\",\"authors\":\"Tim Seynnaeve,&nbsp;Nafie Tairi\",\"doi\":\"10.1016/j.jsc.2023.102260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The isotropic Grassmannian parametrizes isotropic subspaces of a vector space equipped with a quadratic form. In this paper, we show that any maximal isotropic Grassmannian in its Plücker embedding can be defined by pulling back the equations of <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> or <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各向同性Grassmann参数化了具有二次型的向量空间的各向同性子空间。本文证明了在其Plücker嵌入中的任何最大各向同性Grass mann都可以通过拉回Griso(3,7)或Griso(4,8)的方程来定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Universal equations for maximal isotropic Grassmannians

The isotropic Grassmannian parametrizes isotropic subspaces of a vector space equipped with a quadratic form. In this paper, we show that any maximal isotropic Grassmannian in its Plücker embedding can be defined by pulling back the equations of Griso(3,7) or Griso(4,8).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信