{"title":"极大各向同性格拉斯曼子的通用方程","authors":"Tim Seynnaeve, Nafie Tairi","doi":"10.1016/j.jsc.2023.102260","DOIUrl":null,"url":null,"abstract":"<div><p>The isotropic Grassmannian parametrizes isotropic subspaces of a vector space equipped with a quadratic form. In this paper, we show that any maximal isotropic Grassmannian in its Plücker embedding can be defined by pulling back the equations of <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> or <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal equations for maximal isotropic Grassmannians\",\"authors\":\"Tim Seynnaeve, Nafie Tairi\",\"doi\":\"10.1016/j.jsc.2023.102260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The isotropic Grassmannian parametrizes isotropic subspaces of a vector space equipped with a quadratic form. In this paper, we show that any maximal isotropic Grassmannian in its Plücker embedding can be defined by pulling back the equations of <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>)</mo></math></span> or <span><math><mi>G</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>iso</mi></mrow></msub><mo>(</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal equations for maximal isotropic Grassmannians
The isotropic Grassmannian parametrizes isotropic subspaces of a vector space equipped with a quadratic form. In this paper, we show that any maximal isotropic Grassmannian in its Plücker embedding can be defined by pulling back the equations of or .