序列决策问题的代数优化

Pub Date : 2023-07-11 DOI:10.1016/j.jsc.2023.102241
Mareike Dressler , Marina Garrote-López , Guido Montúfar , Johannes Müller , Kemal Rose
{"title":"序列决策问题的代数优化","authors":"Mareike Dressler ,&nbsp;Marina Garrote-López ,&nbsp;Guido Montúfar ,&nbsp;Johannes Müller ,&nbsp;Kemal Rose","doi":"10.1016/j.jsc.2023.102241","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We study the optimization of the expected long-term reward in finite partially observable Markov decision processes<span> over the set of stationary stochastic policies. In the case of deterministic observations, also known as state aggregation, the problem is equivalent to optimizing a linear objective subject to </span></span>quadratic constraints<span><span>. We characterize the feasible set of this problem as the intersection of a product of affine varieties of rank one matrices and a polytope. Based on this description, we obtain bounds on the number of critical points of the </span>optimization problem. Finally, we conduct experiments in which we solve the KKT equations or the </span></span>Lagrange equations<span> over different boundary components of the feasible set, and we compare the result to the theoretical bounds and to other constrained optimization methods.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic optimization of sequential decision problems\",\"authors\":\"Mareike Dressler ,&nbsp;Marina Garrote-López ,&nbsp;Guido Montúfar ,&nbsp;Johannes Müller ,&nbsp;Kemal Rose\",\"doi\":\"10.1016/j.jsc.2023.102241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>We study the optimization of the expected long-term reward in finite partially observable Markov decision processes<span> over the set of stationary stochastic policies. In the case of deterministic observations, also known as state aggregation, the problem is equivalent to optimizing a linear objective subject to </span></span>quadratic constraints<span><span>. We characterize the feasible set of this problem as the intersection of a product of affine varieties of rank one matrices and a polytope. Based on this description, we obtain bounds on the number of critical points of the </span>optimization problem. Finally, we conduct experiments in which we solve the KKT equations or the </span></span>Lagrange equations<span> over different boundary components of the feasible set, and we compare the result to the theoretical bounds and to other constrained optimization methods.</span></p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S074771712300055X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712300055X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了平稳随机策略集上有限部分可观测马尔可夫决策过程中预期长期回报的优化问题。在确定性观测(也称为状态聚合)的情况下,该问题等效于在二次约束下优化线性目标。我们将该问题的可行集刻画为秩一矩阵的仿射变种的乘积与多面体的交集。基于这一描述,我们得到了优化问题临界点数量的界。最后,我们进行实验,在可行集的不同边界分量上求解KKT方程或拉格朗日方程,并将结果与理论界和其他约束优化方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Algebraic optimization of sequential decision problems

We study the optimization of the expected long-term reward in finite partially observable Markov decision processes over the set of stationary stochastic policies. In the case of deterministic observations, also known as state aggregation, the problem is equivalent to optimizing a linear objective subject to quadratic constraints. We characterize the feasible set of this problem as the intersection of a product of affine varieties of rank one matrices and a polytope. Based on this description, we obtain bounds on the number of critical points of the optimization problem. Finally, we conduct experiments in which we solve the KKT equations or the Lagrange equations over different boundary components of the feasible set, and we compare the result to the theoretical bounds and to other constrained optimization methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信