极端事件对森林生态系统退化的影响:混合模型的统计模型检验

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY
Guillaume Cantin , Benoît Delahaye , Beatriz M. Funatsu
{"title":"极端事件对森林生态系统退化的影响:混合模型的统计模型检验","authors":"Guillaume Cantin ,&nbsp;Benoît Delahaye ,&nbsp;Beatriz M. Funatsu","doi":"10.1016/j.ecocom.2023.101039","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the vulnerability of forest ecosystems perturbed by extreme events, such as those arising from climate change. To investigate the complex interactions between the biological dynamics of the forest and the climatic activity, we construct an original hybrid model, obtained by coupling a continuous reaction–diffusion system, which describes the spatio-temporal dynamics of the forest ecosystem, with a discrete probabilistic process, which models the possible occurrences of extreme events. Properties of ecological interest are considered: invariance of the persistence equilibrium, attraction to the extinction equilibrium and emergence of degraded states. Those properties of the hybrid model are verified through an extension of the Statistical Model Checking framework. We establish the existence of a threshold above which the persistence equilibrium of the forest ecosystem is compromised and give a numerical assessment of this threshold in terms of the probability and intensity of extreme events. We also present non-trivial parameter conditions for which the forest ecosystem converges to a degraded savanna-like state.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the degradation of forest ecosystems by extreme events: Statistical Model Checking of a hybrid model\",\"authors\":\"Guillaume Cantin ,&nbsp;Benoît Delahaye ,&nbsp;Beatriz M. Funatsu\",\"doi\":\"10.1016/j.ecocom.2023.101039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the vulnerability of forest ecosystems perturbed by extreme events, such as those arising from climate change. To investigate the complex interactions between the biological dynamics of the forest and the climatic activity, we construct an original hybrid model, obtained by coupling a continuous reaction–diffusion system, which describes the spatio-temporal dynamics of the forest ecosystem, with a discrete probabilistic process, which models the possible occurrences of extreme events. Properties of ecological interest are considered: invariance of the persistence equilibrium, attraction to the extinction equilibrium and emergence of degraded states. Those properties of the hybrid model are verified through an extension of the Statistical Model Checking framework. We establish the existence of a threshold above which the persistence equilibrium of the forest ecosystem is compromised and give a numerical assessment of this threshold in terms of the probability and intensity of extreme events. We also present non-trivial parameter conditions for which the forest ecosystem converges to a degraded savanna-like state.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X23000119\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X23000119","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在这篇论文中,我们研究了受极端事件干扰的森林生态系统的脆弱性,例如气候变化引起的事件。为了研究森林的生物动力学和气候活动之间的复杂相互作用,我们构建了一个原始的混合模型,该模型通过将描述森林生态系统时空动力学的连续反应-扩散系统与模拟极端事件可能发生的离散概率过程相耦合而获得。考虑了生态利益的性质:持久平衡的不变性、对灭绝平衡的吸引力和退化状态的出现。混合模型的这些特性是通过统计模型检查框架的扩展来验证的。我们确定了一个阈值的存在,超过该阈值,森林生态系统的持久平衡就会受到损害,并根据极端事件的概率和强度对该阈值进行了数值评估。我们还提出了森林生态系统收敛到退化草原状状态的非平凡参数条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the degradation of forest ecosystems by extreme events: Statistical Model Checking of a hybrid model

In this paper, we study the vulnerability of forest ecosystems perturbed by extreme events, such as those arising from climate change. To investigate the complex interactions between the biological dynamics of the forest and the climatic activity, we construct an original hybrid model, obtained by coupling a continuous reaction–diffusion system, which describes the spatio-temporal dynamics of the forest ecosystem, with a discrete probabilistic process, which models the possible occurrences of extreme events. Properties of ecological interest are considered: invariance of the persistence equilibrium, attraction to the extinction equilibrium and emergence of degraded states. Those properties of the hybrid model are verified through an extension of the Statistical Model Checking framework. We establish the existence of a threshold above which the persistence equilibrium of the forest ecosystem is compromised and give a numerical assessment of this threshold in terms of the probability and intensity of extreme events. We also present non-trivial parameter conditions for which the forest ecosystem converges to a degraded savanna-like state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信