基于MFMMR-BertSum的提取社交媒体文本摘要

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2023-10-04 DOI:10.1016/j.array.2023.100322
Junqing Fan , Xiaorong Tian , Chengyao Lv , Simin Zhang , Yuewei Wang , Junfeng Zhang
{"title":"基于MFMMR-BertSum的提取社交媒体文本摘要","authors":"Junqing Fan ,&nbsp;Xiaorong Tian ,&nbsp;Chengyao Lv ,&nbsp;Simin Zhang ,&nbsp;Yuewei Wang ,&nbsp;Junfeng Zhang","doi":"10.1016/j.array.2023.100322","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of computer technology has led to an overwhelming amount of textual information, hindering the efficiency of knowledge intake. To address this issue, various text summarization techniques have been developed, including statistics, graph sorting, machine learning, and deep learning. However, the rich semantic features of text often interfere with the abstract effects and lack effective processing of redundant information. In this paper, we propose the Multi-Features Maximal Marginal Relevance BERT (MFMMR-BertSum) model for Extractive Summarization, which utilizes the pre-trained model BERT to tackle the text summarization task. The model incorporates a classification layer for extractive summarization. Additionally, the Maximal Marginal Relevance (MMR) component is utilized to remove information redundancy and optimize the summary results. The proposed method outperforms other sentence-level extractive summarization baseline methods on the CNN/DailyMail dataset, thus verifying its effectiveness.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extractive social media text summarization based on MFMMR-BertSum\",\"authors\":\"Junqing Fan ,&nbsp;Xiaorong Tian ,&nbsp;Chengyao Lv ,&nbsp;Simin Zhang ,&nbsp;Yuewei Wang ,&nbsp;Junfeng Zhang\",\"doi\":\"10.1016/j.array.2023.100322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advancement of computer technology has led to an overwhelming amount of textual information, hindering the efficiency of knowledge intake. To address this issue, various text summarization techniques have been developed, including statistics, graph sorting, machine learning, and deep learning. However, the rich semantic features of text often interfere with the abstract effects and lack effective processing of redundant information. In this paper, we propose the Multi-Features Maximal Marginal Relevance BERT (MFMMR-BertSum) model for Extractive Summarization, which utilizes the pre-trained model BERT to tackle the text summarization task. The model incorporates a classification layer for extractive summarization. Additionally, the Maximal Marginal Relevance (MMR) component is utilized to remove information redundancy and optimize the summary results. The proposed method outperforms other sentence-level extractive summarization baseline methods on the CNN/DailyMail dataset, thus verifying its effectiveness.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005623000474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

计算机技术的进步导致了大量的文本信息,阻碍了知识获取的效率。为了解决这个问题,已经开发了各种文本摘要技术,包括统计、图形排序、机器学习和深度学习。然而,文本丰富的语义特征往往会干扰抽象效果,缺乏对冗余信息的有效处理。在本文中,我们提出了用于提取摘要的多特征最大边际相关BERT(MFMMR-BertSum)模型,该模型利用预先训练的模型BERT来处理文本摘要任务。该模型结合了一个用于提取摘要的分类层。此外,最大边际相关性(MMR)组件用于消除信息冗余并优化汇总结果。在CNN/DaylyMail数据集上,该方法优于其他句子级提取摘要基线方法,从而验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extractive social media text summarization based on MFMMR-BertSum

The advancement of computer technology has led to an overwhelming amount of textual information, hindering the efficiency of knowledge intake. To address this issue, various text summarization techniques have been developed, including statistics, graph sorting, machine learning, and deep learning. However, the rich semantic features of text often interfere with the abstract effects and lack effective processing of redundant information. In this paper, we propose the Multi-Features Maximal Marginal Relevance BERT (MFMMR-BertSum) model for Extractive Summarization, which utilizes the pre-trained model BERT to tackle the text summarization task. The model incorporates a classification layer for extractive summarization. Additionally, the Maximal Marginal Relevance (MMR) component is utilized to remove information redundancy and optimize the summary results. The proposed method outperforms other sentence-level extractive summarization baseline methods on the CNN/DailyMail dataset, thus verifying its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信