Amirhosein Alian, Emilia Zari, Zeyu Wang, Enrico Franco, James P. Avery, Mark Runciman, Benny Lo, Ferdinando Rodriguez y Baena, George Mylonas
{"title":"柔性内窥镜中机器人系统的最新工程进展","authors":"Amirhosein Alian, Emilia Zari, Zeyu Wang, Enrico Franco, James P. Avery, Mark Runciman, Benny Lo, Ferdinando Rodriguez y Baena, George Mylonas","doi":"10.1016/j.tige.2022.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>The past four decades have seen an increase in the incidence of early-onset gastrointestinal cancer. Because early-stage cancer detection is vital to reduce mortality rate, mass screening colonoscopy provides the most effective prevention strategy. However, conventional endoscopy is a painful and technically challenging procedure that requires sedation and experienced endoscopists to be performed. To overcome the current limitations, technological innovation is needed in colonoscopy. In recent years, researchers worldwide have worked to enhance the diagnostic and therapeutic capabilities of endoscopes. The new frontier of endoscopic interventions is represented by robotic flexible endoscopy. Among all options, self-propelling soft endoscopes are particularly promising thanks to their dexterity and adaptability to the curvilinear gastrointestinal anatomy. For these devices to replace the standard endoscopes, integration with embedded sensors and advanced surgical navigation technologies must be investigated. In this review, the progress in robotic endoscopy was divided into the fundamental areas of design, sensing, and imaging. The article offers an overview of the most promising advancements on these three topics since 2018. Continuum endoscopes, capsule endoscopes, and add-on endoscopic devices were included, with a focus on fluid-driven, tendon-driven, and magnetic actuation. Sensing methods employed for the shape and force estimation of flexible endoscopes were classified into model- and sensor-based approaches. Finally, some key contributions in molecular imaging technologies, artificial neural networks, and software algorithms are described. Open challenges are discussed to outline a path toward clinical practice for the next generation of endoscopic devices.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Engineering Developments for Robotic Systems in Flexible Endoscopy\",\"authors\":\"Amirhosein Alian, Emilia Zari, Zeyu Wang, Enrico Franco, James P. Avery, Mark Runciman, Benny Lo, Ferdinando Rodriguez y Baena, George Mylonas\",\"doi\":\"10.1016/j.tige.2022.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The past four decades have seen an increase in the incidence of early-onset gastrointestinal cancer. Because early-stage cancer detection is vital to reduce mortality rate, mass screening colonoscopy provides the most effective prevention strategy. However, conventional endoscopy is a painful and technically challenging procedure that requires sedation and experienced endoscopists to be performed. To overcome the current limitations, technological innovation is needed in colonoscopy. In recent years, researchers worldwide have worked to enhance the diagnostic and therapeutic capabilities of endoscopes. The new frontier of endoscopic interventions is represented by robotic flexible endoscopy. Among all options, self-propelling soft endoscopes are particularly promising thanks to their dexterity and adaptability to the curvilinear gastrointestinal anatomy. For these devices to replace the standard endoscopes, integration with embedded sensors and advanced surgical navigation technologies must be investigated. In this review, the progress in robotic endoscopy was divided into the fundamental areas of design, sensing, and imaging. The article offers an overview of the most promising advancements on these three topics since 2018. Continuum endoscopes, capsule endoscopes, and add-on endoscopic devices were included, with a focus on fluid-driven, tendon-driven, and magnetic actuation. Sensing methods employed for the shape and force estimation of flexible endoscopes were classified into model- and sensor-based approaches. Finally, some key contributions in molecular imaging technologies, artificial neural networks, and software algorithms are described. Open challenges are discussed to outline a path toward clinical practice for the next generation of endoscopic devices.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590030722000885\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590030722000885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Current Engineering Developments for Robotic Systems in Flexible Endoscopy
The past four decades have seen an increase in the incidence of early-onset gastrointestinal cancer. Because early-stage cancer detection is vital to reduce mortality rate, mass screening colonoscopy provides the most effective prevention strategy. However, conventional endoscopy is a painful and technically challenging procedure that requires sedation and experienced endoscopists to be performed. To overcome the current limitations, technological innovation is needed in colonoscopy. In recent years, researchers worldwide have worked to enhance the diagnostic and therapeutic capabilities of endoscopes. The new frontier of endoscopic interventions is represented by robotic flexible endoscopy. Among all options, self-propelling soft endoscopes are particularly promising thanks to their dexterity and adaptability to the curvilinear gastrointestinal anatomy. For these devices to replace the standard endoscopes, integration with embedded sensors and advanced surgical navigation technologies must be investigated. In this review, the progress in robotic endoscopy was divided into the fundamental areas of design, sensing, and imaging. The article offers an overview of the most promising advancements on these three topics since 2018. Continuum endoscopes, capsule endoscopes, and add-on endoscopic devices were included, with a focus on fluid-driven, tendon-driven, and magnetic actuation. Sensing methods employed for the shape and force estimation of flexible endoscopes were classified into model- and sensor-based approaches. Finally, some key contributions in molecular imaging technologies, artificial neural networks, and software algorithms are described. Open challenges are discussed to outline a path toward clinical practice for the next generation of endoscopic devices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.