COVID-19大流行相关数据的时间序列聚类

Zhixue Luo , Lin Zhang , Na Liu , Ye Wu
{"title":"COVID-19大流行相关数据的时间序列聚类","authors":"Zhixue Luo ,&nbsp;Lin Zhang ,&nbsp;Na Liu ,&nbsp;Ye Wu","doi":"10.1016/j.dsm.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>The COVID-19 pandemic continues to impact daily life worldwide. It would be helpful and valuable if we could obtain valid information from the COVID-19 pandemic sequential data itself for characterizing the pandemic. Here, we aim to demonstrate that it is feasible to analyze the patterns of the pandemic using a time-series clustering approach. In this work, we use dynamic time warping distance and hierarchical clustering to cluster time series of daily new cases and deaths from different countries into four patterns. It is found that geographic factors have a large but not decisive influence on the pattern of pandemic development. Moreover, the age structure of the population may also influence the formation of cluster patterns. Our proven valid method may provide a different but very useful perspective for other scholars and researchers.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time series clustering of COVID-19 pandemic-related data\",\"authors\":\"Zhixue Luo ,&nbsp;Lin Zhang ,&nbsp;Na Liu ,&nbsp;Ye Wu\",\"doi\":\"10.1016/j.dsm.2023.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The COVID-19 pandemic continues to impact daily life worldwide. It would be helpful and valuable if we could obtain valid information from the COVID-19 pandemic sequential data itself for characterizing the pandemic. Here, we aim to demonstrate that it is feasible to analyze the patterns of the pandemic using a time-series clustering approach. In this work, we use dynamic time warping distance and hierarchical clustering to cluster time series of daily new cases and deaths from different countries into four patterns. It is found that geographic factors have a large but not decisive influence on the pattern of pandemic development. Moreover, the age structure of the population may also influence the formation of cluster patterns. Our proven valid method may provide a different but very useful perspective for other scholars and researchers.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764923000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764923000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新冠肺炎疫情继续影响着世界各地的日常生活。如果我们能够从新冠肺炎大流行序列数据本身中获得有效信息来描述大流行,这将是有帮助和有价值的。在这里,我们的目的是证明使用时间序列聚类方法分析疫情模式是可行的。在这项工作中,我们使用动态时间扭曲距离和层次聚类将来自不同国家的每日新增病例和死亡人数的时间序列聚类为四种模式。研究发现,地理因素对疫情发展模式有很大但不是决定性的影响。此外,人口的年龄结构也可能影响集群模式的形成。我们被证明有效的方法可能会为其他学者和研究人员提供一个不同但非常有用的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time series clustering of COVID-19 pandemic-related data

The COVID-19 pandemic continues to impact daily life worldwide. It would be helpful and valuable if we could obtain valid information from the COVID-19 pandemic sequential data itself for characterizing the pandemic. Here, we aim to demonstrate that it is feasible to analyze the patterns of the pandemic using a time-series clustering approach. In this work, we use dynamic time warping distance and hierarchical clustering to cluster time series of daily new cases and deaths from different countries into four patterns. It is found that geographic factors have a large but not decisive influence on the pattern of pandemic development. Moreover, the age structure of the population may also influence the formation of cluster patterns. Our proven valid method may provide a different but very useful perspective for other scholars and researchers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信