等周廓线和Yamabe常数的下界

IF 0.6 4区 数学 Q3 MATHEMATICS
Juan Miguel Ruiz, Areli Vázquez Juárez
{"title":"等周廓线和Yamabe常数的下界","authors":"Juan Miguel Ruiz,&nbsp;Areli Vázquez Juárez","doi":"10.1016/j.difgeo.2023.102069","DOIUrl":null,"url":null,"abstract":"<div><p>We estimate explicit lower bounds for the isoperimetric profiles of the Riemannian product of a compact manifold and the Euclidean space with the flat metric, <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>. In particular, we introduce a lower bound for the isoperimetric profile of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for regions of large volume and we improve on previous estimates of lower bounds for the isoperimetric profiles of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We also discuss some applications of these results in order to improve known lower bounds for the Yamabe invariant of certain product manifolds.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102069"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bounds for isoperimetric profiles and Yamabe constants\",\"authors\":\"Juan Miguel Ruiz,&nbsp;Areli Vázquez Juárez\",\"doi\":\"10.1016/j.difgeo.2023.102069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We estimate explicit lower bounds for the isoperimetric profiles of the Riemannian product of a compact manifold and the Euclidean space with the flat metric, <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>+</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>. In particular, we introduce a lower bound for the isoperimetric profile of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for regions of large volume and we improve on previous estimates of lower bounds for the isoperimetric profiles of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We also discuss some applications of these results in order to improve known lower bounds for the Yamabe invariant of certain product manifolds.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102069\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000955\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000955","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们估计了具有平坦度量的紧致流形和欧氏空间的黎曼乘积的等周廓的显式下界,(Mm×Rn,g+gE),m,n>;1.特别地,我们引入了大体积区域的Mm×Rn等周廓线的下界,并改进了先前对S2×R2、S3×R2、S2×R3等周廓的下界的估计。我们还讨论了这些结果的一些应用,以改进某些乘积流形的Yamabe不变量的已知下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for isoperimetric profiles and Yamabe constants

We estimate explicit lower bounds for the isoperimetric profiles of the Riemannian product of a compact manifold and the Euclidean space with the flat metric, (Mm×Rn,g+gE), m,n>1. In particular, we introduce a lower bound for the isoperimetric profile of Mm×Rn for regions of large volume and we improve on previous estimates of lower bounds for the isoperimetric profiles of S2×R2, S3×R2, S2×R3. We also discuss some applications of these results in order to improve known lower bounds for the Yamabe invariant of certain product manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信