板内圆柱几何积分公式

IF 0.6 4区 数学 Q3 MATHEMATICS
Ximo Gual-Arnau
{"title":"板内圆柱几何积分公式","authors":"Ximo Gual-Arnau","doi":"10.1016/j.difgeo.2023.102066","DOIUrl":null,"url":null,"abstract":"<div><p>We present new expressions for the integrals of mean curvature of domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by means of sections with cylinders. Then, we combine these expressions with the corresponding version of the invariant density of affine subspaces in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, in order to obtain pseudo-rotational formulae for all the integrals of mean curvature of ∂<em>K</em>. As particular cases, we present pseudo-rotational integral formulas for the volume, area, integral of mean curvature, and Euler-Poincaré characteristic of a connected domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, whose boundary is a surface, considering slabs in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> whose central plane passes through a fixed point, and cylinders contained in these slabs.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102066"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric integral formulas of cylinders within slabs\",\"authors\":\"Ximo Gual-Arnau\",\"doi\":\"10.1016/j.difgeo.2023.102066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present new expressions for the integrals of mean curvature of domains in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by means of sections with cylinders. Then, we combine these expressions with the corresponding version of the invariant density of affine subspaces in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, in order to obtain pseudo-rotational formulae for all the integrals of mean curvature of ∂<em>K</em>. As particular cases, we present pseudo-rotational integral formulas for the volume, area, integral of mean curvature, and Euler-Poincaré characteristic of a connected domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, whose boundary is a surface, considering slabs in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> whose central plane passes through a fixed point, and cylinders contained in these slabs.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102066\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092622452300092X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452300092X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用圆柱截面给出了Rn域平均曲率积分的新表达式。然后,我们将这些表达式与Rn中仿射子空间不变密度的相应版本相结合,以获得所有平均曲率为?K的积分的伪旋转公式。作为特殊情况,我们给出了R3连通域的体积、面积、平均曲率积分和Euler Poincaré特性的伪旋转积分公式,该连通域的边界是曲面,考虑了R3中中心平面通过不动点的板以及这些板中包含的圆柱体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric integral formulas of cylinders within slabs

We present new expressions for the integrals of mean curvature of domains in Rn by means of sections with cylinders. Then, we combine these expressions with the corresponding version of the invariant density of affine subspaces in Rn, in order to obtain pseudo-rotational formulae for all the integrals of mean curvature of ∂K. As particular cases, we present pseudo-rotational integral formulas for the volume, area, integral of mean curvature, and Euler-Poincaré characteristic of a connected domain of R3, whose boundary is a surface, considering slabs in R3 whose central plane passes through a fixed point, and cylinders contained in these slabs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信