几乎阿贝尔李群上的调和g2结构

Pub Date : 2023-09-19 DOI:10.1016/j.difgeo.2023.102060
Andrés J. Moreno
{"title":"几乎阿贝尔李群上的调和g2结构","authors":"Andrés J. Moreno","doi":"10.1016/j.difgeo.2023.102060","DOIUrl":null,"url":null,"abstract":"<div><p>We consider left-invariant <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on 7-dimensional almost Abelian Lie groups. Also, we characterise the associated torsion forms and the full torsion tensor according to the Lie bracket <em>A</em> of the corresponding Lie algebra. In those terms, we establish the algebraic condition on <em>A</em> for each of the possible 16-torsion classes of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. In particular, we show that four of those torsion classes are not admissible, since <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> implies <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Finally, we use the above results to provide the algebraic criteria on <em>A</em>, satisfying the harmonic condition <span><math><mi>div</mi><mspace></mspace><mi>T</mi><mo>=</mo><mn>0</mn></math></span>, and this allows to identify which torsion classes are harmonic.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harmonic G2-structures on almost Abelian Lie groups\",\"authors\":\"Andrés J. Moreno\",\"doi\":\"10.1016/j.difgeo.2023.102060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider left-invariant <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures on 7-dimensional almost Abelian Lie groups. Also, we characterise the associated torsion forms and the full torsion tensor according to the Lie bracket <em>A</em> of the corresponding Lie algebra. In those terms, we establish the algebraic condition on <em>A</em> for each of the possible 16-torsion classes of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. In particular, we show that four of those torsion classes are not admissible, since <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> implies <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Finally, we use the above results to provide the algebraic criteria on <em>A</em>, satisfying the harmonic condition <span><math><mi>div</mi><mspace></mspace><mi>T</mi><mo>=</mo><mn>0</mn></math></span>, and this allows to identify which torsion classes are harmonic.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑7维几乎阿贝尔李群上的左不变G2结构。此外,我们根据相应李代数的李括号A刻画了相关的扭转形式和全扭转张量。用这些术语,我们为G2结构的可能的16个扭转类中的每一个建立了A上的代数条件。特别地,我们证明了其中四个扭转类是不可容许的,因为τ3=0意味着τ0=0。最后,我们利用上述结果提供了A的代数准则,满足调和条件divT=0,这允许识别哪些扭转类是调和的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Harmonic G2-structures on almost Abelian Lie groups

We consider left-invariant G2-structures on 7-dimensional almost Abelian Lie groups. Also, we characterise the associated torsion forms and the full torsion tensor according to the Lie bracket A of the corresponding Lie algebra. In those terms, we establish the algebraic condition on A for each of the possible 16-torsion classes of a G2-structure. In particular, we show that four of those torsion classes are not admissible, since τ3=0 implies τ0=0. Finally, we use the above results to provide the algebraic criteria on A, satisfying the harmonic condition divT=0, and this allows to identify which torsion classes are harmonic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信