{"title":"周期离散达布变换","authors":"Joseph Cho , Katrin Leschke , Yuta Ogata","doi":"10.1016/j.difgeo.2023.102065","DOIUrl":null,"url":null,"abstract":"<div><p>We express Darboux transformations of discrete polarised curves as parallel sections of discrete connections in the quaternionic formalism. This immediately leads to the linearisation of the monodromy of the transformation. We also consider the integrable reduction to the case of discrete bicycle correspondence. Applying our method to the case of discrete circles, we obtain closed-form discrete parametrisations of all (closed) Darboux transforms and (closed) bicycle correspondences.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102065"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Periodic discrete Darboux transforms\",\"authors\":\"Joseph Cho , Katrin Leschke , Yuta Ogata\",\"doi\":\"10.1016/j.difgeo.2023.102065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We express Darboux transformations of discrete polarised curves as parallel sections of discrete connections in the quaternionic formalism. This immediately leads to the linearisation of the monodromy of the transformation. We also consider the integrable reduction to the case of discrete bicycle correspondence. Applying our method to the case of discrete circles, we obtain closed-form discrete parametrisations of all (closed) Darboux transforms and (closed) bicycle correspondences.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"91 \",\"pages\":\"Article 102065\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523000918\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000918","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We express Darboux transformations of discrete polarised curves as parallel sections of discrete connections in the quaternionic formalism. This immediately leads to the linearisation of the monodromy of the transformation. We also consider the integrable reduction to the case of discrete bicycle correspondence. Applying our method to the case of discrete circles, we obtain closed-form discrete parametrisations of all (closed) Darboux transforms and (closed) bicycle correspondences.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.