Rongli Tan , Ke Li , Yue Sun , Xiaoliang Fan , Zhengtao Shen , Lingyi Tang
{"title":"低温热解对校园落叶的可持续管理及其在Pb固定化中的应用","authors":"Rongli Tan , Ke Li , Yue Sun , Xiaoliang Fan , Zhengtao Shen , Lingyi Tang","doi":"10.1016/j.jes.2023.05.043","DOIUrl":null,"url":null,"abstract":"<div><p>Realizing campus sustainability requires the environmental-friendly and economical treatment of tremendous fallen leaves. Producing fallen leaf biochar at a low temperature is a candidate approach. In this study, six common types of fallen leaves on the campus were pyrolyzed at 300 °C. The obtained biochars were characterized and the adsorption mechanisms of lead (Pb) by the fallen leaf biochars were investigated. The adsorption capacity of leaf biochar for Pb was relatively high, up to 209 mg/g (<em>Yulania denudata</em> leaf biochar). Adsorption of Pb onto active sites was the rate-limiting step for most leaf biochars. But for <em>Platanus</em> leaf biochar, intraparticle diffusion of Pb<sup>2+</sup> dominated owing to the lowest adsorption capacity. However, the highest exchangeable Pb fraction (27%) indicated its potential for removing aqueous Pb<sup>2+</sup>. <em>Ginkgo</em> and <em>Prunus cerasifera</em> leaf biochar immobilized Pb by surface complexation and precipitation as lead oxalate. Hence, they were suitable for soil heavy metal remediation. This study shed the light on the sustainable utilization of campus fallen leaves and the application of fallen leaf biochars in heavy metal remediation.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"139 ","pages":"Pages 281-292"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable management of campus fallen leaves through low-temperature pyrolysis and application in Pb immobilization\",\"authors\":\"Rongli Tan , Ke Li , Yue Sun , Xiaoliang Fan , Zhengtao Shen , Lingyi Tang\",\"doi\":\"10.1016/j.jes.2023.05.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Realizing campus sustainability requires the environmental-friendly and economical treatment of tremendous fallen leaves. Producing fallen leaf biochar at a low temperature is a candidate approach. In this study, six common types of fallen leaves on the campus were pyrolyzed at 300 °C. The obtained biochars were characterized and the adsorption mechanisms of lead (Pb) by the fallen leaf biochars were investigated. The adsorption capacity of leaf biochar for Pb was relatively high, up to 209 mg/g (<em>Yulania denudata</em> leaf biochar). Adsorption of Pb onto active sites was the rate-limiting step for most leaf biochars. But for <em>Platanus</em> leaf biochar, intraparticle diffusion of Pb<sup>2+</sup> dominated owing to the lowest adsorption capacity. However, the highest exchangeable Pb fraction (27%) indicated its potential for removing aqueous Pb<sup>2+</sup>. <em>Ginkgo</em> and <em>Prunus cerasifera</em> leaf biochar immobilized Pb by surface complexation and precipitation as lead oxalate. Hence, they were suitable for soil heavy metal remediation. This study shed the light on the sustainable utilization of campus fallen leaves and the application of fallen leaf biochars in heavy metal remediation.</p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":\"139 \",\"pages\":\"Pages 281-292\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074223002486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074223002486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Sustainable management of campus fallen leaves through low-temperature pyrolysis and application in Pb immobilization
Realizing campus sustainability requires the environmental-friendly and economical treatment of tremendous fallen leaves. Producing fallen leaf biochar at a low temperature is a candidate approach. In this study, six common types of fallen leaves on the campus were pyrolyzed at 300 °C. The obtained biochars were characterized and the adsorption mechanisms of lead (Pb) by the fallen leaf biochars were investigated. The adsorption capacity of leaf biochar for Pb was relatively high, up to 209 mg/g (Yulania denudata leaf biochar). Adsorption of Pb onto active sites was the rate-limiting step for most leaf biochars. But for Platanus leaf biochar, intraparticle diffusion of Pb2+ dominated owing to the lowest adsorption capacity. However, the highest exchangeable Pb fraction (27%) indicated its potential for removing aqueous Pb2+. Ginkgo and Prunus cerasifera leaf biochar immobilized Pb by surface complexation and precipitation as lead oxalate. Hence, they were suitable for soil heavy metal remediation. This study shed the light on the sustainable utilization of campus fallen leaves and the application of fallen leaf biochars in heavy metal remediation.
期刊介绍:
Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.