反馈控制系统中不确定性估计的自适应递归神经网络

Adel Merabet , Saikrishna Kanukollu , Ahmed Al-Durra , Ehab F. El-Saadany
{"title":"反馈控制系统中不确定性估计的自适应递归神经网络","authors":"Adel Merabet ,&nbsp;Saikrishna Kanukollu ,&nbsp;Ahmed Al-Durra ,&nbsp;Ehab F. El-Saadany","doi":"10.1016/j.jai.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a recurrent neural network (RNN) is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems. The neural network approximates the uncertainties related to unmodeled dynamics, parametric variations, and external disturbances. The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance. The RNN weights are online adapted, and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation. The used activation function, at the hidden layer, has an expression that simplifies the adaptation laws from the stability analysis. It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses. The proposed RNN based feedback control is applied to a DC–DC converter for current regulation. Simulation and experimental results are provided to show its effectiveness. Compared to the feedforward neural network and the conventional feedback control, the RNN based feedback control provides good tracking performance.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"2 3","pages":"Pages 119-129"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive recurrent neural network for uncertainties estimation in feedback control system\",\"authors\":\"Adel Merabet ,&nbsp;Saikrishna Kanukollu ,&nbsp;Ahmed Al-Durra ,&nbsp;Ehab F. El-Saadany\",\"doi\":\"10.1016/j.jai.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a recurrent neural network (RNN) is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems. The neural network approximates the uncertainties related to unmodeled dynamics, parametric variations, and external disturbances. The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance. The RNN weights are online adapted, and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation. The used activation function, at the hidden layer, has an expression that simplifies the adaptation laws from the stability analysis. It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses. The proposed RNN based feedback control is applied to a DC–DC converter for current regulation. Simulation and experimental results are provided to show its effectiveness. Compared to the feedforward neural network and the conventional feedback control, the RNN based feedback control provides good tracking performance.</p></div>\",\"PeriodicalId\":100755,\"journal\":{\"name\":\"Journal of Automation and Intelligence\",\"volume\":\"2 3\",\"pages\":\"Pages 119-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949855423000199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855423000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用递归神经网络(RNN)来估计非线性动态系统的不确定性并实现反馈控制。神经网络近似与未建模动力学、参数变化和外部扰动相关的不确定性。RNN具有单个隐藏层,并使用跟踪误差和输出作为反馈来估计干扰。对RNN权值进行了在线自适应,并通过对受控系统的稳定性分析和RNN估计得出了自适应律。所使用的激活函数在隐藏层具有简化稳定性分析中的适应定律的表达式。研究发现,自适应RNN提高了反馈控制器在瞬态和稳态响应下的跟踪性能。将所提出的基于RNN的反馈控制应用于直流-直流变换器进行电流调节。仿真和实验结果表明了该方法的有效性。与前馈神经网络和传统的反馈控制相比,基于RNN的反馈控制具有良好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive recurrent neural network for uncertainties estimation in feedback control system

In this paper, a recurrent neural network (RNN) is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems. The neural network approximates the uncertainties related to unmodeled dynamics, parametric variations, and external disturbances. The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance. The RNN weights are online adapted, and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation. The used activation function, at the hidden layer, has an expression that simplifies the adaptation laws from the stability analysis. It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses. The proposed RNN based feedback control is applied to a DC–DC converter for current regulation. Simulation and experimental results are provided to show its effectiveness. Compared to the feedforward neural network and the conventional feedback control, the RNN based feedback control provides good tracking performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信