基于信念传播的大规模网络系统分布式计算

Qianqian Cai , Zhaorong Zhang , Minyue Fu
{"title":"基于信念传播的大规模网络系统分布式计算","authors":"Qianqian Cai ,&nbsp;Zhaorong Zhang ,&nbsp;Minyue Fu","doi":"10.1016/j.jai.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces several related distributed algorithms, generalised from the celebrated belief propagation algorithm for statistical learning. These algorithms are suitable for a class of computational problems in large-scale networked systems, ranging from average consensus, sensor fusion, distributed estimation, distributed optimisation, distributed control, and distributed learning. By expressing the underlying computational problem as a sparse linear system, each algorithm operates at each node of the network graph and computes iteratively the desired solution. The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem. A number of examples are presented to illustrate their applications. Also introduced is a message-passing algorithm for distributed convex optimisation.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"2 2","pages":"Pages 61-69"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed computations for large-scale networked systems using belief propagation\",\"authors\":\"Qianqian Cai ,&nbsp;Zhaorong Zhang ,&nbsp;Minyue Fu\",\"doi\":\"10.1016/j.jai.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces several related distributed algorithms, generalised from the celebrated belief propagation algorithm for statistical learning. These algorithms are suitable for a class of computational problems in large-scale networked systems, ranging from average consensus, sensor fusion, distributed estimation, distributed optimisation, distributed control, and distributed learning. By expressing the underlying computational problem as a sparse linear system, each algorithm operates at each node of the network graph and computes iteratively the desired solution. The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem. A number of examples are presented to illustrate their applications. Also introduced is a message-passing algorithm for distributed convex optimisation.</p></div>\",\"PeriodicalId\":100755,\"journal\":{\"name\":\"Journal of Automation and Intelligence\",\"volume\":\"2 2\",\"pages\":\"Pages 61-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949855423000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855423000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了几种相关的分布式算法,这些算法是从著名的用于统计学习的置信传播算法推广而来的。这些算法适用于大规模网络系统中的一类计算问题,包括平均一致性、传感器融合、分布式估计、分布式优化、分布式控制和分布式学习。通过将底层计算问题表示为稀疏线性系统,每个算法在网络图的每个节点进行操作,并迭代计算所需的解决方案。从网络图拓扑和相应计算问题的参数的角度讨论了这些算法的行为。文中举例说明了它们的应用。还介绍了一种用于分布式凸优化的消息传递算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed computations for large-scale networked systems using belief propagation

This paper introduces several related distributed algorithms, generalised from the celebrated belief propagation algorithm for statistical learning. These algorithms are suitable for a class of computational problems in large-scale networked systems, ranging from average consensus, sensor fusion, distributed estimation, distributed optimisation, distributed control, and distributed learning. By expressing the underlying computational problem as a sparse linear system, each algorithm operates at each node of the network graph and computes iteratively the desired solution. The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem. A number of examples are presented to illustrate their applications. Also introduced is a message-passing algorithm for distributed convex optimisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信