{"title":"基于信念传播的大规模网络系统分布式计算","authors":"Qianqian Cai , Zhaorong Zhang , Minyue Fu","doi":"10.1016/j.jai.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces several related distributed algorithms, generalised from the celebrated belief propagation algorithm for statistical learning. These algorithms are suitable for a class of computational problems in large-scale networked systems, ranging from average consensus, sensor fusion, distributed estimation, distributed optimisation, distributed control, and distributed learning. By expressing the underlying computational problem as a sparse linear system, each algorithm operates at each node of the network graph and computes iteratively the desired solution. The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem. A number of examples are presented to illustrate their applications. Also introduced is a message-passing algorithm for distributed convex optimisation.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"2 2","pages":"Pages 61-69"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed computations for large-scale networked systems using belief propagation\",\"authors\":\"Qianqian Cai , Zhaorong Zhang , Minyue Fu\",\"doi\":\"10.1016/j.jai.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces several related distributed algorithms, generalised from the celebrated belief propagation algorithm for statistical learning. These algorithms are suitable for a class of computational problems in large-scale networked systems, ranging from average consensus, sensor fusion, distributed estimation, distributed optimisation, distributed control, and distributed learning. By expressing the underlying computational problem as a sparse linear system, each algorithm operates at each node of the network graph and computes iteratively the desired solution. The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem. A number of examples are presented to illustrate their applications. Also introduced is a message-passing algorithm for distributed convex optimisation.</p></div>\",\"PeriodicalId\":100755,\"journal\":{\"name\":\"Journal of Automation and Intelligence\",\"volume\":\"2 2\",\"pages\":\"Pages 61-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949855423000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855423000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed computations for large-scale networked systems using belief propagation
This paper introduces several related distributed algorithms, generalised from the celebrated belief propagation algorithm for statistical learning. These algorithms are suitable for a class of computational problems in large-scale networked systems, ranging from average consensus, sensor fusion, distributed estimation, distributed optimisation, distributed control, and distributed learning. By expressing the underlying computational problem as a sparse linear system, each algorithm operates at each node of the network graph and computes iteratively the desired solution. The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem. A number of examples are presented to illustrate their applications. Also introduced is a message-passing algorithm for distributed convex optimisation.