基于新目标函数的鲁棒自适应估计——利用l1范数和l0范数

Sihai Guan , Chuanwu Zhang , Guofu Wang , Bharat Biswal
{"title":"基于新目标函数的鲁棒自适应估计——利用l1范数和l0范数","authors":"Sihai Guan ,&nbsp;Chuanwu Zhang ,&nbsp;Guofu Wang ,&nbsp;Bharat Biswal","doi":"10.1016/j.jai.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>To fully take advantage of LMS, LMAT, and SELMS, a novel adaptive estimator using the L1-norm and L0-norm of the estimated error is proposed in this paper. Then based on minimizing the mean-square deviation at the current time, the optimal step-size, parameters <span><math><mi>δ</mi></math></span> and <span><math><mi>θ</mi></math></span> of the proposed adaptive estimator are obtained. Besides, the stability and computational complexity of the mean estimation error is analyzed theoretically. Experimental results (both simulation and real mechanical system datasets) show that the proposed adaptive estimator is more robust to input signals and a variety of measurement noises (Gaussian and non-Gaussian noises). In addition, it is superior to LMS, LMAT, SELMS, the convex combination of LMS and LMAT algorithm, the convex combination of LMS and SELMS algorithm, and the convex combination of SELMS and LMAT algorithm. The theoretical analysis is consistent with the Monte-Carlo results. Both of them show that the adaptive estimator has an excellent performance in the estimation of unknown linear systems under various measurement noises.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"2 2","pages":"Pages 105-117"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust adaptive estimator based on a novel objective function—Using the L1-norm and L0-norm\",\"authors\":\"Sihai Guan ,&nbsp;Chuanwu Zhang ,&nbsp;Guofu Wang ,&nbsp;Bharat Biswal\",\"doi\":\"10.1016/j.jai.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To fully take advantage of LMS, LMAT, and SELMS, a novel adaptive estimator using the L1-norm and L0-norm of the estimated error is proposed in this paper. Then based on minimizing the mean-square deviation at the current time, the optimal step-size, parameters <span><math><mi>δ</mi></math></span> and <span><math><mi>θ</mi></math></span> of the proposed adaptive estimator are obtained. Besides, the stability and computational complexity of the mean estimation error is analyzed theoretically. Experimental results (both simulation and real mechanical system datasets) show that the proposed adaptive estimator is more robust to input signals and a variety of measurement noises (Gaussian and non-Gaussian noises). In addition, it is superior to LMS, LMAT, SELMS, the convex combination of LMS and LMAT algorithm, the convex combination of LMS and SELMS algorithm, and the convex combination of SELMS and LMAT algorithm. The theoretical analysis is consistent with the Monte-Carlo results. Both of them show that the adaptive estimator has an excellent performance in the estimation of unknown linear systems under various measurement noises.</p></div>\",\"PeriodicalId\":100755,\"journal\":{\"name\":\"Journal of Automation and Intelligence\",\"volume\":\"2 2\",\"pages\":\"Pages 105-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949855423000187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855423000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了充分利用LMS、LMAT和SELMS,本文提出了一种利用估计误差的L1范数和L0范数的自适应估计器。然后,在最小化当前时间的均方偏差的基础上,获得了所提出的自适应估计器的最优步长、参数δ和θ。此外,从理论上分析了均值估计误差的稳定性和计算复杂度。实验结果(仿真和实际机械系统数据集)表明,所提出的自适应估计器对输入信号和各种测量噪声(高斯噪声和非高斯噪声)更具鲁棒性。此外,它还优于LMS、LMAT、SELMS、LMS和LMAT算法的凸组合、LMS和SELMS算法的凸结合以及SELMS和LMAT方法的凸结合。理论分析与蒙特卡罗结果相一致。这两个结果都表明,自适应估计器在各种测量噪声下对未知线性系统的估计具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust adaptive estimator based on a novel objective function—Using the L1-norm and L0-norm

To fully take advantage of LMS, LMAT, and SELMS, a novel adaptive estimator using the L1-norm and L0-norm of the estimated error is proposed in this paper. Then based on minimizing the mean-square deviation at the current time, the optimal step-size, parameters δ and θ of the proposed adaptive estimator are obtained. Besides, the stability and computational complexity of the mean estimation error is analyzed theoretically. Experimental results (both simulation and real mechanical system datasets) show that the proposed adaptive estimator is more robust to input signals and a variety of measurement noises (Gaussian and non-Gaussian noises). In addition, it is superior to LMS, LMAT, SELMS, the convex combination of LMS and LMAT algorithm, the convex combination of LMS and SELMS algorithm, and the convex combination of SELMS and LMAT algorithm. The theoretical analysis is consistent with the Monte-Carlo results. Both of them show that the adaptive estimator has an excellent performance in the estimation of unknown linear systems under various measurement noises.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信