{"title":"动态自适应网络集成最佳压力管理和自清洁控制","authors":"Bradley Jenks , Aly-Joy Ulusoy , Filippo Pecci , Ivan Stoianov","doi":"10.1016/j.arcontrol.2023.03.014","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the problem of integrating optimal pressure management and self-cleaning controls in dynamically adaptive water distribution networks. We review existing single-objective valve placement and control problems for minimizing average zone pressure (AZP) and maximizing self-cleaning capacity (SCC). Since AZP and SCC are conflicting objectives, we formulate a bi-objective design-for-control problem where locations and operational settings of pressure control and automatic flushing valves are jointly optimized. We approximate Pareto fronts using the weighted sum scalarization method, which uses a previously developed convex heuristic to solve the sequence of parametrized single-objective problems. The resulting Pareto fronts suggest that significant improvements in SCC can be achieved for minimal trade-offs in AZP performance. Moreover, we demonstrate that a hierarchical design strategy is capable of yielding good quality solutions to both objectives. This hierarchical design considers pressure control valves first placed for the primary AZP objective, followed by automatic flushing valves placed to augment SCC conditions. In addition, we investigate an adaptive control scheme for dynamically transitioning between AZP and SCC controls. We demonstrate these control challenges on case networks with both interconnected and branched topology.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 486-497"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamically adaptive networks for integrating optimal pressure management and self-cleaning controls\",\"authors\":\"Bradley Jenks , Aly-Joy Ulusoy , Filippo Pecci , Ivan Stoianov\",\"doi\":\"10.1016/j.arcontrol.2023.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the problem of integrating optimal pressure management and self-cleaning controls in dynamically adaptive water distribution networks. We review existing single-objective valve placement and control problems for minimizing average zone pressure (AZP) and maximizing self-cleaning capacity (SCC). Since AZP and SCC are conflicting objectives, we formulate a bi-objective design-for-control problem where locations and operational settings of pressure control and automatic flushing valves are jointly optimized. We approximate Pareto fronts using the weighted sum scalarization method, which uses a previously developed convex heuristic to solve the sequence of parametrized single-objective problems. The resulting Pareto fronts suggest that significant improvements in SCC can be achieved for minimal trade-offs in AZP performance. Moreover, we demonstrate that a hierarchical design strategy is capable of yielding good quality solutions to both objectives. This hierarchical design considers pressure control valves first placed for the primary AZP objective, followed by automatic flushing valves placed to augment SCC conditions. In addition, we investigate an adaptive control scheme for dynamically transitioning between AZP and SCC controls. We demonstrate these control challenges on case networks with both interconnected and branched topology.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"55 \",\"pages\":\"Pages 486-497\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000184\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000184","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dynamically adaptive networks for integrating optimal pressure management and self-cleaning controls
This paper investigates the problem of integrating optimal pressure management and self-cleaning controls in dynamically adaptive water distribution networks. We review existing single-objective valve placement and control problems for minimizing average zone pressure (AZP) and maximizing self-cleaning capacity (SCC). Since AZP and SCC are conflicting objectives, we formulate a bi-objective design-for-control problem where locations and operational settings of pressure control and automatic flushing valves are jointly optimized. We approximate Pareto fronts using the weighted sum scalarization method, which uses a previously developed convex heuristic to solve the sequence of parametrized single-objective problems. The resulting Pareto fronts suggest that significant improvements in SCC can be achieved for minimal trade-offs in AZP performance. Moreover, we demonstrate that a hierarchical design strategy is capable of yielding good quality solutions to both objectives. This hierarchical design considers pressure control valves first placed for the primary AZP objective, followed by automatic flushing valves placed to augment SCC conditions. In addition, we investigate an adaptive control scheme for dynamically transitioning between AZP and SCC controls. We demonstrate these control challenges on case networks with both interconnected and branched topology.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.