Parvane Atashpeykar, Amirhesam Zaeim , Ali Haji-Badali
{"title":"局部共形平坦洛伦兹三流形上的弱爱因斯坦条件","authors":"Parvane Atashpeykar, Amirhesam Zaeim , Ali Haji-Badali","doi":"10.1016/S0034-4877(23)00024-1","DOIUrl":null,"url":null,"abstract":"<div><p>We classify the Lorentzian manifolds of dimension <em>n</em> ≥ 3 admitting some diagonalizable operators which satisfy the Codazzi equation. This classification is applied to characterize three-dimensional weakly-Einstein Lorentzian manifolds which fall in the conformal class of the flat metrics.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"91 2","pages":"Pages 183-198"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEAKLY-EINSTEIN CONDITIONS OVER LOCALLY CONFORMALLY FLAT LORENTZIAN THREE-MANIFOLDS\",\"authors\":\"Parvane Atashpeykar, Amirhesam Zaeim , Ali Haji-Badali\",\"doi\":\"10.1016/S0034-4877(23)00024-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify the Lorentzian manifolds of dimension <em>n</em> ≥ 3 admitting some diagonalizable operators which satisfy the Codazzi equation. This classification is applied to characterize three-dimensional weakly-Einstein Lorentzian manifolds which fall in the conformal class of the flat metrics.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"91 2\",\"pages\":\"Pages 183-198\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487723000241\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000241","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
WEAKLY-EINSTEIN CONDITIONS OVER LOCALLY CONFORMALLY FLAT LORENTZIAN THREE-MANIFOLDS
We classify the Lorentzian manifolds of dimension n ≥ 3 admitting some diagonalizable operators which satisfy the Codazzi equation. This classification is applied to characterize three-dimensional weakly-Einstein Lorentzian manifolds which fall in the conformal class of the flat metrics.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.