Nick Bezhanishvili , Anna Dmitrieva , Jim de Groot , Tommaso Moraschini
{"title":"超越分布性的正模态逻辑","authors":"Nick Bezhanishvili , Anna Dmitrieva , Jim de Groot , Tommaso Moraschini","doi":"10.1016/j.apal.2023.103374","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a duality for (modal) lattices that need not be distributive, and use it to study positive (modal) logic beyond distributivity, which we call weak positive (modal) logic. This duality builds on the Hofmann, Mislove and Stralka duality for meet-semilattices. We introduce the notion of <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-persistence and show that every weak positive modal logic is <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-persistent. This approach leads to a new relational semantics for weak positive modal logic, for which we prove an analogue of Sahlqvist's correspondence result.<span><sup>1</sup></span></p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 2","pages":"Article 103374"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Positive modal logic beyond distributivity\",\"authors\":\"Nick Bezhanishvili , Anna Dmitrieva , Jim de Groot , Tommaso Moraschini\",\"doi\":\"10.1016/j.apal.2023.103374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a duality for (modal) lattices that need not be distributive, and use it to study positive (modal) logic beyond distributivity, which we call weak positive (modal) logic. This duality builds on the Hofmann, Mislove and Stralka duality for meet-semilattices. We introduce the notion of <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-persistence and show that every weak positive modal logic is <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-persistent. This approach leads to a new relational semantics for weak positive modal logic, for which we prove an analogue of Sahlqvist's correspondence result.<span><sup>1</sup></span></p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 2\",\"pages\":\"Article 103374\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223001318\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001318","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We develop a duality for (modal) lattices that need not be distributive, and use it to study positive (modal) logic beyond distributivity, which we call weak positive (modal) logic. This duality builds on the Hofmann, Mislove and Stralka duality for meet-semilattices. We introduce the notion of -persistence and show that every weak positive modal logic is -persistent. This approach leads to a new relational semantics for weak positive modal logic, for which we prove an analogue of Sahlqvist's correspondence result.1
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.