用整数规划构造无极值三角形图

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Ali Erdem Banak, Tınaz Ekim, Z. Caner Taşkın
{"title":"用整数规划构造无极值三角形图","authors":"Ali Erdem Banak,&nbsp;Tınaz Ekim,&nbsp;Z. Caner Taşkın","doi":"10.1016/j.disopt.2023.100802","DOIUrl":null,"url":null,"abstract":"<div><p><span>The maximum number of edges in a graph with matching number </span><span><math><mi>m</mi></math></span><span> and maximum degree </span><span><math><mi>d</mi></math></span><span> has been determined in Chvátal and Hanson (1976) and Balachandran and Khare (2009), where some extremal graphs have also been provided. Then, a new question has emerged: how the maximum edge count is affected by forbidding some subgraphs occurring in these extremal graphs? In Ahanjideh et al. (2022), the problem is solved in triangle-free graphs for </span><span><math><mrow><mi>d</mi><mo>≥</mo><mi>m</mi></mrow></math></span>, and for <span><math><mrow><mi>d</mi><mo>&lt;</mo><mi>m</mi></mrow></math></span> with either <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>2</mn><mi>d</mi></mrow></math></span> or <span><math><mrow><mi>d</mi><mo>≤</mo><mn>6</mn></mrow></math></span>, where <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> is approximately <span><math><mrow><mn>5</mn><mi>d</mi><mo>/</mo><mn>4</mn></mrow></math></span><span>. The authors derived structural properties of triangle-free extremal graphs, which allows us to focus on constructing small extremal components to form an extremal graph. Based on these findings, in this paper, we develop an integer programming formulation for constructing extremal graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital Branching to reduce symmetry. We also implement our integer programming formulation so that the feasible region is restricted iteratively. Using a combination of the two approaches, we expand the solution into </span><span><math><mrow><mi>d</mi><mo>≤</mo><mn>10</mn></mrow></math></span> instead of <span><math><mrow><mi>d</mi><mo>≤</mo><mn>6</mn></mrow></math></span> for <span><math><mrow><mi>m</mi><mo>&gt;</mo><mi>d</mi></mrow></math></span>. Our results endorse the formula for the number of edges in all extremal triangle-free graphs conjectured in Ahanjideh et al. (2022).</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"50 ","pages":"Article 100802"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing extremal triangle-free graphs using integer programming\",\"authors\":\"Ali Erdem Banak,&nbsp;Tınaz Ekim,&nbsp;Z. Caner Taşkın\",\"doi\":\"10.1016/j.disopt.2023.100802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The maximum number of edges in a graph with matching number </span><span><math><mi>m</mi></math></span><span> and maximum degree </span><span><math><mi>d</mi></math></span><span> has been determined in Chvátal and Hanson (1976) and Balachandran and Khare (2009), where some extremal graphs have also been provided. Then, a new question has emerged: how the maximum edge count is affected by forbidding some subgraphs occurring in these extremal graphs? In Ahanjideh et al. (2022), the problem is solved in triangle-free graphs for </span><span><math><mrow><mi>d</mi><mo>≥</mo><mi>m</mi></mrow></math></span>, and for <span><math><mrow><mi>d</mi><mo>&lt;</mo><mi>m</mi></mrow></math></span> with either <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>≤</mo><mi>m</mi><mo>&lt;</mo><mn>2</mn><mi>d</mi></mrow></math></span> or <span><math><mrow><mi>d</mi><mo>≤</mo><mn>6</mn></mrow></math></span>, where <span><math><mrow><mi>Z</mi><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span> is approximately <span><math><mrow><mn>5</mn><mi>d</mi><mo>/</mo><mn>4</mn></mrow></math></span><span>. The authors derived structural properties of triangle-free extremal graphs, which allows us to focus on constructing small extremal components to form an extremal graph. Based on these findings, in this paper, we develop an integer programming formulation for constructing extremal graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital Branching to reduce symmetry. We also implement our integer programming formulation so that the feasible region is restricted iteratively. Using a combination of the two approaches, we expand the solution into </span><span><math><mrow><mi>d</mi><mo>≤</mo><mn>10</mn></mrow></math></span> instead of <span><math><mrow><mi>d</mi><mo>≤</mo><mn>6</mn></mrow></math></span> for <span><math><mrow><mi>m</mi><mo>&gt;</mo><mi>d</mi></mrow></math></span>. Our results endorse the formula for the number of edges in all extremal triangle-free graphs conjectured in Ahanjideh et al. (2022).</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"50 \",\"pages\":\"Article 100802\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528623000440\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Chvátal和Hanson(1976)以及Balachandran和Khare(2009)已经确定了具有匹配数m和最大度d的图中的最大边数,其中还提供了一些极值图。然后,一个新的问题出现了:禁止在这些极值图中出现一些子图,如何影响最大边数?在Ahanjideh等人(2022)中,对于d≥m,并且对于d<;m,其中Z(d)≤m<;2d或d≤6,其中Z(d)约为5d/4。作者推导了无三角形极值图的结构性质,这使我们能够专注于构造小的极值分量来形成极值图。基于这些发现,本文提出了一个构造极值图的整数规划公式。由于我们的公式是高度对称的,我们使用我们自己的轨道分支实现来减少对称性。我们还实现了我们的整数规划公式,从而迭代地限制可行区域。使用这两种方法的组合,我们将解扩展为d≤10,而不是m>;d.我们的结果支持Ahanjideh等人(2022)推测的所有极值无三角形图的边数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing extremal triangle-free graphs using integer programming

The maximum number of edges in a graph with matching number m and maximum degree d has been determined in Chvátal and Hanson (1976) and Balachandran and Khare (2009), where some extremal graphs have also been provided. Then, a new question has emerged: how the maximum edge count is affected by forbidding some subgraphs occurring in these extremal graphs? In Ahanjideh et al. (2022), the problem is solved in triangle-free graphs for dm, and for d<m with either Z(d)m<2d or d6, where Z(d) is approximately 5d/4. The authors derived structural properties of triangle-free extremal graphs, which allows us to focus on constructing small extremal components to form an extremal graph. Based on these findings, in this paper, we develop an integer programming formulation for constructing extremal graphs. Since our formulation is highly symmetric, we use our own implementation of Orbital Branching to reduce symmetry. We also implement our integer programming formulation so that the feasible region is restricted iteratively. Using a combination of the two approaches, we expand the solution into d10 instead of d6 for m>d. Our results endorse the formula for the number of edges in all extremal triangle-free graphs conjectured in Ahanjideh et al. (2022).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信