{"title":"无机离子聚合:一种生物启发的材料制备策略","authors":"Jian Zhang, Weifeng Fang, Zhaoming Liu, Ruikang Tang","doi":"10.1016/j.bgtech.2023.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Bioinspired materials with excellent properties have attracted intense interests of scientists, and the methodology for rationally design of these materials is crucially important. This review briefly introduces our recent achievements on inorganic ionic polymerization for bioinspired material preparation. The inorganic ionic polymerization realized the assembly of inorganic ions in a way similar to the polymerization in polymer chemistry, overcoming the limitation by classical nucleation pathway. It enabled the moldable construction of inorganic minerals and even the reconstruction of enamel tissue, which commonly only achieved by biomineralization. In the presence of organic molecules, the inorganic ionic polymerization could participate in the organic polymerization, resulting in hybrids with molecular-scaled organic-inorganic homogeneity. And furthermore, under the regulation of bio-inspired molecules, the condensed state of the assembled inorganic ions could show unusual behaviors: such as adding the flexibility to commonly fractal inorganic minerals, and flowability to solid mineral particles. It enabled the production of flexible mineral materials as plastic substitute, and the extrusion forming of moldable minerals under room temperature. The inorganic ionic polymerization demonstrated a promising way to synthesize inorganics in a more rational way, which may shed light on more advanced bio-inspired and biomimetic material.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"1 1","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inorganic ionic polymerization: A bioinspired strategy for material preparation\",\"authors\":\"Jian Zhang, Weifeng Fang, Zhaoming Liu, Ruikang Tang\",\"doi\":\"10.1016/j.bgtech.2023.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioinspired materials with excellent properties have attracted intense interests of scientists, and the methodology for rationally design of these materials is crucially important. This review briefly introduces our recent achievements on inorganic ionic polymerization for bioinspired material preparation. The inorganic ionic polymerization realized the assembly of inorganic ions in a way similar to the polymerization in polymer chemistry, overcoming the limitation by classical nucleation pathway. It enabled the moldable construction of inorganic minerals and even the reconstruction of enamel tissue, which commonly only achieved by biomineralization. In the presence of organic molecules, the inorganic ionic polymerization could participate in the organic polymerization, resulting in hybrids with molecular-scaled organic-inorganic homogeneity. And furthermore, under the regulation of bio-inspired molecules, the condensed state of the assembled inorganic ions could show unusual behaviors: such as adding the flexibility to commonly fractal inorganic minerals, and flowability to solid mineral particles. It enabled the production of flexible mineral materials as plastic substitute, and the extrusion forming of moldable minerals under room temperature. The inorganic ionic polymerization demonstrated a promising way to synthesize inorganics in a more rational way, which may shed light on more advanced bio-inspired and biomimetic material.</p></div>\",\"PeriodicalId\":100175,\"journal\":{\"name\":\"Biogeotechnics\",\"volume\":\"1 1\",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949929123000049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929123000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inorganic ionic polymerization: A bioinspired strategy for material preparation
Bioinspired materials with excellent properties have attracted intense interests of scientists, and the methodology for rationally design of these materials is crucially important. This review briefly introduces our recent achievements on inorganic ionic polymerization for bioinspired material preparation. The inorganic ionic polymerization realized the assembly of inorganic ions in a way similar to the polymerization in polymer chemistry, overcoming the limitation by classical nucleation pathway. It enabled the moldable construction of inorganic minerals and even the reconstruction of enamel tissue, which commonly only achieved by biomineralization. In the presence of organic molecules, the inorganic ionic polymerization could participate in the organic polymerization, resulting in hybrids with molecular-scaled organic-inorganic homogeneity. And furthermore, under the regulation of bio-inspired molecules, the condensed state of the assembled inorganic ions could show unusual behaviors: such as adding the flexibility to commonly fractal inorganic minerals, and flowability to solid mineral particles. It enabled the production of flexible mineral materials as plastic substitute, and the extrusion forming of moldable minerals under room temperature. The inorganic ionic polymerization demonstrated a promising way to synthesize inorganics in a more rational way, which may shed light on more advanced bio-inspired and biomimetic material.