Václav Blažej, Pratibha Choudhary, Dušan Knop, Jan Matyáš Křišťan, Ondřej Suchý, Tomáš Valla
{"title":"跟踪路径的常因子逼近与容错反馈顶点集","authors":"Václav Blažej, Pratibha Choudhary, Dušan Knop, Jan Matyáš Křišťan, Ondřej Suchý, Tomáš Valla","doi":"10.1016/j.disopt.2022.100756","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a vertex-weighted graph <span><math><mi>G</mi></math></span> with a source <span><math><mi>s</mi></math></span> and a target <span><math><mi>t</mi></math></span>. <span>Tracking Paths</span> requires finding a minimum weight set of vertices (<em>trackers</em>) such that the sequence of trackers in each path from <span><math><mi>s</mi></math></span> to <span><math><mi>t</mi></math></span> is unique. In this work, we derive a factor 6-approximation algorithm for <span>Tracking Paths</span> in weighted graphs and a factor 4-approximation algorithm if the input is unweighted. This is the first constant factor approximation for this problem. While doing so, we also study approximation of the closely related <em>r</em>-<span>Fault Tolerant Feedback Vertex Set</span> problem. There, for a fixed integer <span><math><mi>r</mi></math></span> and a given vertex-weighted graph <span><math><mi>G</mi></math></span>, the task is to find a minimum weight set of vertices intersecting every cycle of <span><math><mi>G</mi></math></span> in at least <span><math><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></math></span> vertices. We give a factor <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> approximation algorithm for <em>r</em>-<span>Fault Tolerant Feedback Vertex Set</span> if <span><math><mi>r</mi></math></span> is a constant.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constant factor approximation for tracking paths and fault tolerant feedback vertex set\",\"authors\":\"Václav Blažej, Pratibha Choudhary, Dušan Knop, Jan Matyáš Křišťan, Ondřej Suchý, Tomáš Valla\",\"doi\":\"10.1016/j.disopt.2022.100756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider a vertex-weighted graph <span><math><mi>G</mi></math></span> with a source <span><math><mi>s</mi></math></span> and a target <span><math><mi>t</mi></math></span>. <span>Tracking Paths</span> requires finding a minimum weight set of vertices (<em>trackers</em>) such that the sequence of trackers in each path from <span><math><mi>s</mi></math></span> to <span><math><mi>t</mi></math></span> is unique. In this work, we derive a factor 6-approximation algorithm for <span>Tracking Paths</span> in weighted graphs and a factor 4-approximation algorithm if the input is unweighted. This is the first constant factor approximation for this problem. While doing so, we also study approximation of the closely related <em>r</em>-<span>Fault Tolerant Feedback Vertex Set</span> problem. There, for a fixed integer <span><math><mi>r</mi></math></span> and a given vertex-weighted graph <span><math><mi>G</mi></math></span>, the task is to find a minimum weight set of vertices intersecting every cycle of <span><math><mi>G</mi></math></span> in at least <span><math><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></math></span> vertices. We give a factor <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> approximation algorithm for <em>r</em>-<span>Fault Tolerant Feedback Vertex Set</span> if <span><math><mi>r</mi></math></span> is a constant.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000615\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Constant factor approximation for tracking paths and fault tolerant feedback vertex set
Consider a vertex-weighted graph with a source and a target . Tracking Paths requires finding a minimum weight set of vertices (trackers) such that the sequence of trackers in each path from to is unique. In this work, we derive a factor 6-approximation algorithm for Tracking Paths in weighted graphs and a factor 4-approximation algorithm if the input is unweighted. This is the first constant factor approximation for this problem. While doing so, we also study approximation of the closely related r-Fault Tolerant Feedback Vertex Set problem. There, for a fixed integer and a given vertex-weighted graph , the task is to find a minimum weight set of vertices intersecting every cycle of in at least vertices. We give a factor approximation algorithm for r-Fault Tolerant Feedback Vertex Set if is a constant.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.