{"title":"非相关机器随机在线调度的改进贪心算法","authors":"Sven Jäger","doi":"10.1016/j.disopt.2022.100753","DOIUrl":null,"url":null,"abstract":"<div><p>Most practical scheduling applications involve some uncertainty about the arriving times and lengths of the jobs. Stochastic online scheduling is a well-established model capturing this. Here the arrivals occur online, while the processing times are random. For this model, Gupta, Moseley, Uetz, and Xie recently devised an efficient policy for non-preemptive scheduling on unrelated machines with the objective to minimize the expected total weighted completion time. We improve upon this policy by adroitly combining greedy job assignment with <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>-point scheduling on each machine. In this way we obtain a <span><math><mrow><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span>-competitive deterministic and an <span><math><mrow><mo>(</mo><mn>8</mn><mo>+</mo><mn>4</mn><mi>Δ</mi><mo>)</mo></mrow></math></span>-competitive randomized stochastic online scheduling policy, where <span><math><mi>Δ</mi></math></span> is an upper bound on the squared coefficients of variation of the processing times. We also give constant performance guarantees for these policies within the class of all fixed-assignment policies. The <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>-point scheduling on a single machine can be enhanced when the upper bound <span><math><mi>Δ</mi></math></span> is known a priori or the processing times are known to be <span><math><mi>δ</mi></math></span>-NBUE for some <span><math><mrow><mi>δ</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span>. This implies improved competitive ratios for unrelated machines but may also be of independent interest.</span></p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved greedy algorithm for stochastic online scheduling on unrelated machines\",\"authors\":\"Sven Jäger\",\"doi\":\"10.1016/j.disopt.2022.100753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most practical scheduling applications involve some uncertainty about the arriving times and lengths of the jobs. Stochastic online scheduling is a well-established model capturing this. Here the arrivals occur online, while the processing times are random. For this model, Gupta, Moseley, Uetz, and Xie recently devised an efficient policy for non-preemptive scheduling on unrelated machines with the objective to minimize the expected total weighted completion time. We improve upon this policy by adroitly combining greedy job assignment with <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>-point scheduling on each machine. In this way we obtain a <span><math><mrow><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>Δ</mi><mo>)</mo></mrow></mrow></math></span>-competitive deterministic and an <span><math><mrow><mo>(</mo><mn>8</mn><mo>+</mo><mn>4</mn><mi>Δ</mi><mo>)</mo></mrow></math></span>-competitive randomized stochastic online scheduling policy, where <span><math><mi>Δ</mi></math></span> is an upper bound on the squared coefficients of variation of the processing times. We also give constant performance guarantees for these policies within the class of all fixed-assignment policies. The <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>-point scheduling on a single machine can be enhanced when the upper bound <span><math><mi>Δ</mi></math></span> is known a priori or the processing times are known to be <span><math><mi>δ</mi></math></span>-NBUE for some <span><math><mrow><mi>δ</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span>. This implies improved competitive ratios for unrelated machines but may also be of independent interest.</span></p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000585\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000585","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An improved greedy algorithm for stochastic online scheduling on unrelated machines
Most practical scheduling applications involve some uncertainty about the arriving times and lengths of the jobs. Stochastic online scheduling is a well-established model capturing this. Here the arrivals occur online, while the processing times are random. For this model, Gupta, Moseley, Uetz, and Xie recently devised an efficient policy for non-preemptive scheduling on unrelated machines with the objective to minimize the expected total weighted completion time. We improve upon this policy by adroitly combining greedy job assignment with -point scheduling on each machine. In this way we obtain a -competitive deterministic and an -competitive randomized stochastic online scheduling policy, where is an upper bound on the squared coefficients of variation of the processing times. We also give constant performance guarantees for these policies within the class of all fixed-assignment policies. The -point scheduling on a single machine can be enhanced when the upper bound is known a priori or the processing times are known to be -NBUE for some . This implies improved competitive ratios for unrelated machines but may also be of independent interest.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.