超气湿和气湿岩石表面:通过接触角分析进行的最新评估

IF 4.2 Q2 ENERGY & FUELS
Mohammad Azadi Tabar , Abolfazl Dehghan Monfared , Flor Shayegh , Farzad Barzegar , Mohammad Hossein Ghazanfari
{"title":"超气湿和气湿岩石表面:通过接触角分析进行的最新评估","authors":"Mohammad Azadi Tabar ,&nbsp;Abolfazl Dehghan Monfared ,&nbsp;Flor Shayegh ,&nbsp;Farzad Barzegar ,&nbsp;Mohammad Hossein Ghazanfari","doi":"10.1016/j.petlm.2021.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem. To this end, this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry. As a preliminary step, advancing, receding, static, and the most stable contact angle terminology are defined. The study is followed by the definition of the contact angle hysteresis effect. The application of surface free energy in the selection of the best gas wet agent is then analyzed. Afterward, the impact of the size-dependent behavior of drop on contact angle is discussed. Finally, a sessile drop experiment is explained to achieve the defined parameters. For future contributions to petroleum industry journals, like this journal, this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"9 1","pages":"Pages 1-7"},"PeriodicalIF":4.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Super gas wet and gas wet rock surface: State of the art evaluation through contact angle analysis\",\"authors\":\"Mohammad Azadi Tabar ,&nbsp;Abolfazl Dehghan Monfared ,&nbsp;Flor Shayegh ,&nbsp;Farzad Barzegar ,&nbsp;Mohammad Hossein Ghazanfari\",\"doi\":\"10.1016/j.petlm.2021.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem. To this end, this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry. As a preliminary step, advancing, receding, static, and the most stable contact angle terminology are defined. The study is followed by the definition of the contact angle hysteresis effect. The application of surface free energy in the selection of the best gas wet agent is then analyzed. Afterward, the impact of the size-dependent behavior of drop on contact angle is discussed. Finally, a sessile drop experiment is explained to achieve the defined parameters. For future contributions to petroleum industry journals, like this journal, this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"9 1\",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656121000675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656121000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

最近,超气湿和气湿表面在石油工业中得到了广泛的关注,在过去十年中,越来越多的出版物与凝析油储层的润湿性变化有关。在许多情况下,接触角测量已被用于评估润湿性变化。尽管接触角测量似乎是一种简单的方法,但该技术存在许多误用,从而导致对相应结果的误解。在这方面,在基于接触角的液固气系统润湿性评估中,对最新更新的概念和干预参数进行关键检查,可能有助于提供一些补救措施来缓解这一问题。为此,这项工作基于表面科学和化学社区,对准确的术语和严格的协议进行了调查。作为初步步骤,定义了前进、后退、静态和最稳定的接触角术语。接着对接触角磁滞效应进行了定义。分析了表面自由能在选择最佳气体润湿剂中的应用。然后,讨论了液滴尺寸依赖行为对接触角的影响。最后,对实现所定义参数的固着跌落实验进行了解释。对于未来对石油工业期刊(如本期刊)的贡献,这项工作可以为分析化学润湿性改性剂的结果和比较评估提供一个简单的概念框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super gas wet and gas wet rock surface: State of the art evaluation through contact angle analysis

Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas systems could aid to provide some remediation to alleviate this problem. To this end, this work presents a survey on the accurate terms and rigorous protocols based on the community of surface science and chemistry. As a preliminary step, advancing, receding, static, and the most stable contact angle terminology are defined. The study is followed by the definition of the contact angle hysteresis effect. The application of surface free energy in the selection of the best gas wet agent is then analyzed. Afterward, the impact of the size-dependent behavior of drop on contact angle is discussed. Finally, a sessile drop experiment is explained to achieve the defined parameters. For future contributions to petroleum industry journals, like this journal, this work could offer an easy use of the conceptual framework for analyzing the results and comparative evaluations in chemical wettability modifier agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信