无碰撞磁重连接区的混沌电阻率

Q4 Physics and Astronomy
WANG Zhen , CHEN Ling , WU De-jin
{"title":"无碰撞磁重连接区的混沌电阻率","authors":"WANG Zhen ,&nbsp;CHEN Ling ,&nbsp;WU De-jin","doi":"10.1016/j.chinastron.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Collisionless magnetic reconnection, which converts the magnetic energy into the kinetic energy of plasma particles via the heating or acceleration, has been believed widely to be able to explain various eruptive phenomena such as solar flares and geomagnetic storms. However, the microphysical mechanism of anomalous resistivity in the collisionless magnetic reconnection is still an unsolved fundamental problem. Among the many physical mechanisms of anomalous resistivity generation, chaos-induced resistivity based on the chaos of the charged particle orbits near the magnetic neutral point is not the most popular formation mechanism, but its microscopic physical picture is the clearest. This paper first briefly reviews the early research and physical model of the chaos-induced resistivity in collisionless magnetic reconnection region, introduces the recent research progress of the chaos-induced resistivity, and expounds the future research direction of the chaos-induced resistivity.</p></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"47 3","pages":"Pages 470-489"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaos-induced Resistivity in Collisionless Magnetic Reconnection Region\",\"authors\":\"WANG Zhen ,&nbsp;CHEN Ling ,&nbsp;WU De-jin\",\"doi\":\"10.1016/j.chinastron.2023.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Collisionless magnetic reconnection, which converts the magnetic energy into the kinetic energy of plasma particles via the heating or acceleration, has been believed widely to be able to explain various eruptive phenomena such as solar flares and geomagnetic storms. However, the microphysical mechanism of anomalous resistivity in the collisionless magnetic reconnection is still an unsolved fundamental problem. Among the many physical mechanisms of anomalous resistivity generation, chaos-induced resistivity based on the chaos of the charged particle orbits near the magnetic neutral point is not the most popular formation mechanism, but its microscopic physical picture is the clearest. This paper first briefly reviews the early research and physical model of the chaos-induced resistivity in collisionless magnetic reconnection region, introduces the recent research progress of the chaos-induced resistivity, and expounds the future research direction of the chaos-induced resistivity.</p></div>\",\"PeriodicalId\":35730,\"journal\":{\"name\":\"Chinese Astronomy and Astrophysics\",\"volume\":\"47 3\",\"pages\":\"Pages 470-489\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0275106223000528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106223000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

无碰撞磁重联通过加热或加速将磁能转化为等离子体粒子的动能,被广泛认为能够解释各种喷发现象,如太阳耀斑和地磁暴。然而,无碰撞磁重联中异常电阻率的微观物理机制仍然是一个尚未解决的基本问题。在异常电阻率产生的众多物理机制中,基于磁中性点附近带电粒子轨道混沌的混沌诱导电阻率并不是最常见的形成机制,但其微观物理图像最清晰。本文首先简要回顾了无碰撞磁重联区混沌感应电阻率的早期研究和物理模型,介绍了混沌感应电阻率最近的研究进展,并阐述了混沌感应电阻未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos-induced Resistivity in Collisionless Magnetic Reconnection Region

Collisionless magnetic reconnection, which converts the magnetic energy into the kinetic energy of plasma particles via the heating or acceleration, has been believed widely to be able to explain various eruptive phenomena such as solar flares and geomagnetic storms. However, the microphysical mechanism of anomalous resistivity in the collisionless magnetic reconnection is still an unsolved fundamental problem. Among the many physical mechanisms of anomalous resistivity generation, chaos-induced resistivity based on the chaos of the charged particle orbits near the magnetic neutral point is not the most popular formation mechanism, but its microscopic physical picture is the clearest. This paper first briefly reviews the early research and physical model of the chaos-induced resistivity in collisionless magnetic reconnection region, introduces the recent research progress of the chaos-induced resistivity, and expounds the future research direction of the chaos-induced resistivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Astronomy and Astrophysics
Chinese Astronomy and Astrophysics Physics and Astronomy-Astronomy and Astrophysics
CiteScore
0.70
自引率
0.00%
发文量
20
期刊介绍: The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信