Francesco Di Nardo , Marco Romanato , Fabiola Spolaor , Daniele Volpe , Sandro Fioretti , Zimi Sawacha
{"title":"帕金森病患者行走过程中简化的肌肉补充策略:肌电图信号的时频分析","authors":"Francesco Di Nardo , Marco Romanato , Fabiola Spolaor , Daniele Volpe , Sandro Fioretti , Zimi Sawacha","doi":"10.1016/j.irbm.2023.100798","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Although gait analysis<span> has been widely adopted to describe Parkinson's disease (PD) dysfunctions during walking, few efforts have been made to understand muscle activity role. The current study aims to characterize lower-limb-muscle recruitment during walking in time-frequency domain, based on Continuous Wavelet Transform (CWT) analysis of surface-electromyography (sEMG) signal from lower-limb muscles.</span></p></div><div><h3>Materials and methods</h3><p>sEMG signals from Tibialis Anterior (TA), Gastrocnemius Lateralis (GL), Rectus Femoris (RF), and Biceps Femoris (BF) of 20 people with PD and 10 age-matched healthy controls (HC) were acquired during gait. sEMG signals were processed applying a CWT-based approach to assess the occurrence frequency (OF, i.e., the percentage of strides of each muscle activation occurrence) and the frequency content of each muscle activation (in Hz). These parameters are rarely quantified in PD.</p></div><div><h3>Results</h3><p>Compared to HC, people with PD displayed a significant decrease (p<0.05) in median OF on RF, BF, and TA, indicating a tendency to reduce the global involvement of lower-limb muscles. No significant differences (p>0.05) in OF were detected among muscle within the same population. No significant changes (p>0.05) in frequency content were revealed in PD.</p></div><div><h3>Conclusion</h3><p>This analysis suggests that people with PD are characterized by a reduced recruitment of those muscles typically adopted to finely control body-segment motion and a concomitant increased recruitment of those muscles mainly involved in locomotion. No substantial alteration in recruiting muscle fibers is associated with PD. These findings suggest that people with PD are inclined to adopt simpler muscular-recruitment strategies during walking, compared to HC.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"44 6","pages":"Article 100798"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Muscle-Recruitment Strategy During Walking in Parkinson's Disease People: A Time-Frequency Analysis of EMG Signal\",\"authors\":\"Francesco Di Nardo , Marco Romanato , Fabiola Spolaor , Daniele Volpe , Sandro Fioretti , Zimi Sawacha\",\"doi\":\"10.1016/j.irbm.2023.100798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Although gait analysis<span> has been widely adopted to describe Parkinson's disease (PD) dysfunctions during walking, few efforts have been made to understand muscle activity role. The current study aims to characterize lower-limb-muscle recruitment during walking in time-frequency domain, based on Continuous Wavelet Transform (CWT) analysis of surface-electromyography (sEMG) signal from lower-limb muscles.</span></p></div><div><h3>Materials and methods</h3><p>sEMG signals from Tibialis Anterior (TA), Gastrocnemius Lateralis (GL), Rectus Femoris (RF), and Biceps Femoris (BF) of 20 people with PD and 10 age-matched healthy controls (HC) were acquired during gait. sEMG signals were processed applying a CWT-based approach to assess the occurrence frequency (OF, i.e., the percentage of strides of each muscle activation occurrence) and the frequency content of each muscle activation (in Hz). These parameters are rarely quantified in PD.</p></div><div><h3>Results</h3><p>Compared to HC, people with PD displayed a significant decrease (p<0.05) in median OF on RF, BF, and TA, indicating a tendency to reduce the global involvement of lower-limb muscles. No significant differences (p>0.05) in OF were detected among muscle within the same population. No significant changes (p>0.05) in frequency content were revealed in PD.</p></div><div><h3>Conclusion</h3><p>This analysis suggests that people with PD are characterized by a reduced recruitment of those muscles typically adopted to finely control body-segment motion and a concomitant increased recruitment of those muscles mainly involved in locomotion. No substantial alteration in recruiting muscle fibers is associated with PD. These findings suggest that people with PD are inclined to adopt simpler muscular-recruitment strategies during walking, compared to HC.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"44 6\",\"pages\":\"Article 100798\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000477\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000477","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Simplified Muscle-Recruitment Strategy During Walking in Parkinson's Disease People: A Time-Frequency Analysis of EMG Signal
Objective
Although gait analysis has been widely adopted to describe Parkinson's disease (PD) dysfunctions during walking, few efforts have been made to understand muscle activity role. The current study aims to characterize lower-limb-muscle recruitment during walking in time-frequency domain, based on Continuous Wavelet Transform (CWT) analysis of surface-electromyography (sEMG) signal from lower-limb muscles.
Materials and methods
sEMG signals from Tibialis Anterior (TA), Gastrocnemius Lateralis (GL), Rectus Femoris (RF), and Biceps Femoris (BF) of 20 people with PD and 10 age-matched healthy controls (HC) were acquired during gait. sEMG signals were processed applying a CWT-based approach to assess the occurrence frequency (OF, i.e., the percentage of strides of each muscle activation occurrence) and the frequency content of each muscle activation (in Hz). These parameters are rarely quantified in PD.
Results
Compared to HC, people with PD displayed a significant decrease (p<0.05) in median OF on RF, BF, and TA, indicating a tendency to reduce the global involvement of lower-limb muscles. No significant differences (p>0.05) in OF were detected among muscle within the same population. No significant changes (p>0.05) in frequency content were revealed in PD.
Conclusion
This analysis suggests that people with PD are characterized by a reduced recruitment of those muscles typically adopted to finely control body-segment motion and a concomitant increased recruitment of those muscles mainly involved in locomotion. No substantial alteration in recruiting muscle fibers is associated with PD. These findings suggest that people with PD are inclined to adopt simpler muscular-recruitment strategies during walking, compared to HC.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…