Xiaohong Fan , Zhichao Zuo , Yunhua Li , Yingjun Zhou , Haibo Liu , Xiao Zhou , Jianping Zhang
{"title":"基于多模态CT特征提取的COVID-19自动统计诊断","authors":"Xiaohong Fan , Zhichao Zuo , Yunhua Li , Yingjun Zhou , Haibo Liu , Xiao Zhou , Jianping Zhang","doi":"10.1016/j.metrad.2023.100018","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Computed tomography (CT) is highly sensitive to lung-related abnormalities as a non-invasive method and has become an essential tool for screening and diagnosing Coronavirus disease 2019 (COVID-19). To reduce the stress of work for physicians and speed up diagnosis, we propose a novel automatic diagnosis pipeline for COVID-19 based on high-dimensional radiomic features extracted from multimodal CT scans (multi-geometric and multiscale).</p></div><div><h3>Materials and methods</h3><p>There are 746 CT scans involved in this study, where 349 CT scans are COVID-19 positive and 397 CT scans are COVID-19 negative. All of them are from the public dataset. We first construct a transfer learning-based auto-segmentation model with a morphological post-processing block to improve the lung region segmentation. Then the radiomics feature extraction is guided by the proposed multi-modal CT scans strategy. In addition, our automatic diagnosis pipeline is driven by a well-designed loss function. We also explain the diagnosis capability from the related theory of linear subspace spanned by multi-modal radiomics features.</p></div><div><h3>Results</h3><p>Under the 10-fold cross-validation strategy, our approach can achieve an improvement in diagnostic performance of 5. 77%, 7. 78%, 7. 74%, 7. 78%, 7. 45% compared to the radiomic features extracted from the original CT scans, and diagnosis performance is promoted to 91.53%, 86.46%, 86.47%, 86.46%, 86.95% in terms of <em>AUC</em>, <em>Acc</em>, <em>F1</em>, <em>Recall</em> and <em>Precision</em> in public datasets.</p></div><div><h3>Conclusions</h3><p>We demonstrate a statistically significant improvement of the proposed statistical learning method compared to the state-of-the-art machine learning-based diagnosis approaches. Thanks to theoretical support and excellent diagnostic performance, our method can be deployed in clinical auxiliary diagnosis, releasing the overstretched medical resources.</p></div>","PeriodicalId":100921,"journal":{"name":"Meta-Radiology","volume":"1 2","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic statistical diagnosis of COVID-19 based on multi-modal CT feature extraction\",\"authors\":\"Xiaohong Fan , Zhichao Zuo , Yunhua Li , Yingjun Zhou , Haibo Liu , Xiao Zhou , Jianping Zhang\",\"doi\":\"10.1016/j.metrad.2023.100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Computed tomography (CT) is highly sensitive to lung-related abnormalities as a non-invasive method and has become an essential tool for screening and diagnosing Coronavirus disease 2019 (COVID-19). To reduce the stress of work for physicians and speed up diagnosis, we propose a novel automatic diagnosis pipeline for COVID-19 based on high-dimensional radiomic features extracted from multimodal CT scans (multi-geometric and multiscale).</p></div><div><h3>Materials and methods</h3><p>There are 746 CT scans involved in this study, where 349 CT scans are COVID-19 positive and 397 CT scans are COVID-19 negative. All of them are from the public dataset. We first construct a transfer learning-based auto-segmentation model with a morphological post-processing block to improve the lung region segmentation. Then the radiomics feature extraction is guided by the proposed multi-modal CT scans strategy. In addition, our automatic diagnosis pipeline is driven by a well-designed loss function. We also explain the diagnosis capability from the related theory of linear subspace spanned by multi-modal radiomics features.</p></div><div><h3>Results</h3><p>Under the 10-fold cross-validation strategy, our approach can achieve an improvement in diagnostic performance of 5. 77%, 7. 78%, 7. 74%, 7. 78%, 7. 45% compared to the radiomic features extracted from the original CT scans, and diagnosis performance is promoted to 91.53%, 86.46%, 86.47%, 86.46%, 86.95% in terms of <em>AUC</em>, <em>Acc</em>, <em>F1</em>, <em>Recall</em> and <em>Precision</em> in public datasets.</p></div><div><h3>Conclusions</h3><p>We demonstrate a statistically significant improvement of the proposed statistical learning method compared to the state-of-the-art machine learning-based diagnosis approaches. Thanks to theoretical support and excellent diagnostic performance, our method can be deployed in clinical auxiliary diagnosis, releasing the overstretched medical resources.</p></div>\",\"PeriodicalId\":100921,\"journal\":{\"name\":\"Meta-Radiology\",\"volume\":\"1 2\",\"pages\":\"Article 100018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta-Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950162823000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta-Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950162823000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic statistical diagnosis of COVID-19 based on multi-modal CT feature extraction
Background and purpose
Computed tomography (CT) is highly sensitive to lung-related abnormalities as a non-invasive method and has become an essential tool for screening and diagnosing Coronavirus disease 2019 (COVID-19). To reduce the stress of work for physicians and speed up diagnosis, we propose a novel automatic diagnosis pipeline for COVID-19 based on high-dimensional radiomic features extracted from multimodal CT scans (multi-geometric and multiscale).
Materials and methods
There are 746 CT scans involved in this study, where 349 CT scans are COVID-19 positive and 397 CT scans are COVID-19 negative. All of them are from the public dataset. We first construct a transfer learning-based auto-segmentation model with a morphological post-processing block to improve the lung region segmentation. Then the radiomics feature extraction is guided by the proposed multi-modal CT scans strategy. In addition, our automatic diagnosis pipeline is driven by a well-designed loss function. We also explain the diagnosis capability from the related theory of linear subspace spanned by multi-modal radiomics features.
Results
Under the 10-fold cross-validation strategy, our approach can achieve an improvement in diagnostic performance of 5. 77%, 7. 78%, 7. 74%, 7. 78%, 7. 45% compared to the radiomic features extracted from the original CT scans, and diagnosis performance is promoted to 91.53%, 86.46%, 86.47%, 86.46%, 86.95% in terms of AUC, Acc, F1, Recall and Precision in public datasets.
Conclusions
We demonstrate a statistically significant improvement of the proposed statistical learning method compared to the state-of-the-art machine learning-based diagnosis approaches. Thanks to theoretical support and excellent diagnostic performance, our method can be deployed in clinical auxiliary diagnosis, releasing the overstretched medical resources.