用Rado和Henson图形的拷贝强迫

IF 0.6 2区 数学 Q2 LOGIC
Osvaldo Guzmán , Stevo Todorcevic
{"title":"用Rado和Henson图形的拷贝强迫","authors":"Osvaldo Guzmán ,&nbsp;Stevo Todorcevic","doi":"10.1016/j.apal.2023.103286","DOIUrl":null,"url":null,"abstract":"<div><p>If <span><math><mi>B</mi></math></span> is a relational structure, define <span><math><mi>P</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span> the partial order of all substructures of <span><math><mi>B</mi></math></span> that are isomorphic to it. Improving a result of Kurilić and the second author, we prove that if <span><math><mi>R</mi></math></span> is the random graph, then <span><math><mi>P</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is forcing equivalent to <span><math><mi>S</mi><mo>⁎</mo><mover><mrow><mi>R</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span>, where <span><math><mi>S</mi></math></span> is Sacks forcing and <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is an <em>ω</em>-distributive forcing that is not forcing equivalent to a <em>σ</em>-closed one. We also prove that <span><math><msub><mrow><mi>P</mi><mo>(</mo><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is forcing equivalent to a <em>σ</em>-closed forcing, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the generic triangle-free graph.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"174 8","pages":"Article 103286"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forcing with copies of the Rado and Henson graphs\",\"authors\":\"Osvaldo Guzmán ,&nbsp;Stevo Todorcevic\",\"doi\":\"10.1016/j.apal.2023.103286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>If <span><math><mi>B</mi></math></span> is a relational structure, define <span><math><mi>P</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span> the partial order of all substructures of <span><math><mi>B</mi></math></span> that are isomorphic to it. Improving a result of Kurilić and the second author, we prove that if <span><math><mi>R</mi></math></span> is the random graph, then <span><math><mi>P</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is forcing equivalent to <span><math><mi>S</mi><mo>⁎</mo><mover><mrow><mi>R</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span>, where <span><math><mi>S</mi></math></span> is Sacks forcing and <span><math><mover><mrow><mi>R</mi></mrow><mrow><mo>˙</mo></mrow></mover></math></span> is an <em>ω</em>-distributive forcing that is not forcing equivalent to a <em>σ</em>-closed one. We also prove that <span><math><msub><mrow><mi>P</mi><mo>(</mo><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is forcing equivalent to a <em>σ</em>-closed forcing, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the generic triangle-free graph.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"174 8\",\"pages\":\"Article 103286\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722300043X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722300043X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

如果B是关系结构,则定义P(B)为同构于它的B的所有子结构的偏序。改进Kurilić和第二作者的结果,我们证明了如果R是随机图,则P(R)是等价于S R的强迫,其中S是萨克斯强迫,R是不等价于σ-闭强迫的ω-分布强迫。我们还证明了P(H3)是等价于σ-闭强迫的强迫,其中H3是一般的无三角形图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forcing with copies of the Rado and Henson graphs

If B is a relational structure, define P(B) the partial order of all substructures of B that are isomorphic to it. Improving a result of Kurilić and the second author, we prove that if R is the random graph, then P(R) is forcing equivalent to SR˙, where S is Sacks forcing and R˙ is an ω-distributive forcing that is not forcing equivalent to a σ-closed one. We also prove that P(H3) is forcing equivalent to a σ-closed forcing, where H3 is the generic triangle-free graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信