{"title":"树木理想的不同共通性","authors":"Saharon Shelah , Otmar Spinas","doi":"10.1016/j.apal.2023.103290","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a general framework of generalized tree forcings, GTF for short, that includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using this concept we study the cofinality of the ideal <span><math><mi>I</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> associated with a GTF <strong><em>Q</em></strong>. We show that if for two GTF's <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> the consistency of <span><math><mrow><mi>add</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo><mo><</mo><mspace></mspace><mrow><mi>add</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span> holds, then we can obtain the consistency of <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo><mo><</mo><mspace></mspace><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>. We also show that <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo></math></span> can consistently be any cardinal of cofinality larger than the continuum.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"174 8","pages":"Article 103290"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Different cofinalities of tree ideals\",\"authors\":\"Saharon Shelah , Otmar Spinas\",\"doi\":\"10.1016/j.apal.2023.103290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a general framework of generalized tree forcings, GTF for short, that includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using this concept we study the cofinality of the ideal <span><math><mi>I</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> associated with a GTF <strong><em>Q</em></strong>. We show that if for two GTF's <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> the consistency of <span><math><mrow><mi>add</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo><mo><</mo><mspace></mspace><mrow><mi>add</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span> holds, then we can obtain the consistency of <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo><mo><</mo><mspace></mspace><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo><mo>)</mo></math></span>. We also show that <span><math><mrow><mi>cof</mi></mrow><mo>(</mo><mi>I</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo></math></span> can consistently be any cardinal of cofinality larger than the continuum.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"174 8\",\"pages\":\"Article 103290\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223000477\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000477","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We introduce a general framework of generalized tree forcings, GTF for short, that includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using this concept we study the cofinality of the ideal associated with a GTF Q. We show that if for two GTF's and the consistency of holds, then we can obtain the consistency of . We also show that can consistently be any cardinal of cofinality larger than the continuum.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.