基于人工智能的全自动全周应变对应激性CMR患者预后的影响

IF 18 Q4 Medicine
T. Pezel , T. Hovasse , S. Toupin , P. Garot , F. Sanguineti , S. Champagne , T. Chitiboi , P. Sharma , T. Unterseeh , J. Garot
{"title":"基于人工智能的全自动全周应变对应激性CMR患者预后的影响","authors":"T. Pezel ,&nbsp;T. Hovasse ,&nbsp;S. Toupin ,&nbsp;P. Garot ,&nbsp;F. Sanguineti ,&nbsp;S. Champagne ,&nbsp;T. Chitiboi ,&nbsp;P. Sharma ,&nbsp;T. Unterseeh ,&nbsp;J. Garot","doi":"10.1016/j.acvdsp.2023.04.045","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>To determine whether fully automated artificial intelligence-based global circumferential strain (GCS) assessed during vasodilator<span> stress cardiovascular magnetic resonance (CMR) can provide incremental prognostic value.</span></p></div><div><h3>Method</h3><p><span>Between 2016 and 2018, a longitudinal study included all consecutive patients with abnormal stress CMR defined by the presence of inducible ischaemia and/or late </span>gadolinium<span><span> enhancement (LGE). Control subjects with normal stress CMR were selected using a propensity score-matching. Stress-GCS was assessed using a fully automatic machine learning algorithm based on featured-tracking imaging from short-axis cine images. The primary outcome was the occurrence of major adverse clinical events (MACE) defined as cardiovascular mortality or nonfatal myocardial infarction. </span>Cox regressions evaluated the association between stress-GCS and the primary outcome after adjustment for traditional prognosticators.</span></p></div><div><h3>Results</h3><p>In 2670 patients [65<!--> <!-->±<!--> <!-->12<!--> <!-->years, 68% men, 1:1 matched patients (1335 with normal and 1335 with abnormal CMR)], stress-GCS was associated with MACE [median follow-up 5.2 (4.8–5.5) years] after adjustment for risk factors in the propensity-matched population (adjusted hazard ratio [HR]: 1.12 [95% CI: 1.06–1.18]) and patients with normal CMR (HR: 1.43 [95% CI: 1.30–1.57], both <em>P</em> <!-->&lt;<!--> <span>0.001), but not in patients with abnormal CMR (</span><em>P</em> <!-->=<!--> <!-->0.33). In patients with normal CMR, an increased stress-GCS<!--> <!-->&gt;<!--> <!-->−10% showed the best improvement in model discrimination and reclassification above traditional and stress CMR findings (C-statistic improvement: 0.27; NRI<!--> <!-->=<!--> <!-->0.538; IDI<!--> <!-->=<!--> <!-->0.108, all <em>P</em> <!-->&lt;<!--> <!-->0.001; LR-test <em>P</em> <!-->&lt;<!--> <!-->0.001).</p></div><div><h3>Conclusion</h3><p>Stress-GCS is independently associated with MACE in patients undergoing stress CMR, with an incremental prognostic value over traditional risk factors and stress CMR findings in the group of patients with normal CMR. Prognostic value of AI-based Stress-GCS (<span>Fig. 1</span>).</p></div>","PeriodicalId":8140,"journal":{"name":"Archives of Cardiovascular Diseases Supplements","volume":"15 3","pages":"Pages 264-265"},"PeriodicalIF":18.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognostic impact of artificial intelligence-based fully automated global circumferential strain in patients undergoing stress CMR\",\"authors\":\"T. Pezel ,&nbsp;T. Hovasse ,&nbsp;S. Toupin ,&nbsp;P. Garot ,&nbsp;F. Sanguineti ,&nbsp;S. Champagne ,&nbsp;T. Chitiboi ,&nbsp;P. Sharma ,&nbsp;T. Unterseeh ,&nbsp;J. Garot\",\"doi\":\"10.1016/j.acvdsp.2023.04.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>To determine whether fully automated artificial intelligence-based global circumferential strain (GCS) assessed during vasodilator<span> stress cardiovascular magnetic resonance (CMR) can provide incremental prognostic value.</span></p></div><div><h3>Method</h3><p><span>Between 2016 and 2018, a longitudinal study included all consecutive patients with abnormal stress CMR defined by the presence of inducible ischaemia and/or late </span>gadolinium<span><span> enhancement (LGE). Control subjects with normal stress CMR were selected using a propensity score-matching. Stress-GCS was assessed using a fully automatic machine learning algorithm based on featured-tracking imaging from short-axis cine images. The primary outcome was the occurrence of major adverse clinical events (MACE) defined as cardiovascular mortality or nonfatal myocardial infarction. </span>Cox regressions evaluated the association between stress-GCS and the primary outcome after adjustment for traditional prognosticators.</span></p></div><div><h3>Results</h3><p>In 2670 patients [65<!--> <!-->±<!--> <!-->12<!--> <!-->years, 68% men, 1:1 matched patients (1335 with normal and 1335 with abnormal CMR)], stress-GCS was associated with MACE [median follow-up 5.2 (4.8–5.5) years] after adjustment for risk factors in the propensity-matched population (adjusted hazard ratio [HR]: 1.12 [95% CI: 1.06–1.18]) and patients with normal CMR (HR: 1.43 [95% CI: 1.30–1.57], both <em>P</em> <!-->&lt;<!--> <span>0.001), but not in patients with abnormal CMR (</span><em>P</em> <!-->=<!--> <!-->0.33). In patients with normal CMR, an increased stress-GCS<!--> <!-->&gt;<!--> <!-->−10% showed the best improvement in model discrimination and reclassification above traditional and stress CMR findings (C-statistic improvement: 0.27; NRI<!--> <!-->=<!--> <!-->0.538; IDI<!--> <!-->=<!--> <!-->0.108, all <em>P</em> <!-->&lt;<!--> <!-->0.001; LR-test <em>P</em> <!-->&lt;<!--> <!-->0.001).</p></div><div><h3>Conclusion</h3><p>Stress-GCS is independently associated with MACE in patients undergoing stress CMR, with an incremental prognostic value over traditional risk factors and stress CMR findings in the group of patients with normal CMR. Prognostic value of AI-based Stress-GCS (<span>Fig. 1</span>).</p></div>\",\"PeriodicalId\":8140,\"journal\":{\"name\":\"Archives of Cardiovascular Diseases Supplements\",\"volume\":\"15 3\",\"pages\":\"Pages 264-265\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Cardiovascular Diseases Supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878648023001842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Cardiovascular Diseases Supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878648023001842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

引言确定在血管舒张应激-心血管磁共振(CMR)期间评估的全自动基于人工智能的全球周向应变(GCS)是否可以提供增加的预后价值。方法在2016年至2018年期间,一项纵向研究纳入了所有连续的异常应激CMR患者,其定义为存在诱导性缺血和/或晚期钆增强(LGE)。使用倾向评分匹配选择具有正常压力CMR的对照受试者。基于短轴电影图像的特征跟踪成像,使用全自动机器学习算法评估应力GCS。主要结果是发生主要不良临床事件(MACE),定义为心血管死亡率或非致命性心肌梗死。Cox回归评估了传统预测者调整后应激性GCS与主要结果之间的相关性。结果2670例患者[65±12岁,68%为男性,1:1匹配的患者(1335例正常,1335例异常CMR)],在倾向匹配人群(调整后的危险比[HR]:1.12[95%CI:1.06-1.18])和CMR正常患者(HR:1.43[95%CI+1.30-1.57],均P<;0.001)中,应激性GCS与MACE相关[中位随访5.2(4.8-5.5)年],但在CMR异常患者中不相关(P=0.33)。在CMR正常的患者中,增加的应力GCS>;−10%的患者在模型辨别和重新分类方面的改善最好,高于传统和应激CMR结果(C-统计学改善:0.27;NRI=0.538;IDI=0.108,均P<;0.001;LR检验P<;001)。结论应激CMR患者的应激性GCS与MACE独立相关,在CMR正常的患者组中,与传统风险因素和压力CMR结果相比具有增加的预后价值。基于AI的应激性GCS的预后价值(图1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prognostic impact of artificial intelligence-based fully automated global circumferential strain in patients undergoing stress CMR

Introduction

To determine whether fully automated artificial intelligence-based global circumferential strain (GCS) assessed during vasodilator stress cardiovascular magnetic resonance (CMR) can provide incremental prognostic value.

Method

Between 2016 and 2018, a longitudinal study included all consecutive patients with abnormal stress CMR defined by the presence of inducible ischaemia and/or late gadolinium enhancement (LGE). Control subjects with normal stress CMR were selected using a propensity score-matching. Stress-GCS was assessed using a fully automatic machine learning algorithm based on featured-tracking imaging from short-axis cine images. The primary outcome was the occurrence of major adverse clinical events (MACE) defined as cardiovascular mortality or nonfatal myocardial infarction. Cox regressions evaluated the association between stress-GCS and the primary outcome after adjustment for traditional prognosticators.

Results

In 2670 patients [65 ± 12 years, 68% men, 1:1 matched patients (1335 with normal and 1335 with abnormal CMR)], stress-GCS was associated with MACE [median follow-up 5.2 (4.8–5.5) years] after adjustment for risk factors in the propensity-matched population (adjusted hazard ratio [HR]: 1.12 [95% CI: 1.06–1.18]) and patients with normal CMR (HR: 1.43 [95% CI: 1.30–1.57], both P < 0.001), but not in patients with abnormal CMR (P = 0.33). In patients with normal CMR, an increased stress-GCS > −10% showed the best improvement in model discrimination and reclassification above traditional and stress CMR findings (C-statistic improvement: 0.27; NRI = 0.538; IDI = 0.108, all P < 0.001; LR-test P < 0.001).

Conclusion

Stress-GCS is independently associated with MACE in patients undergoing stress CMR, with an incremental prognostic value over traditional risk factors and stress CMR findings in the group of patients with normal CMR. Prognostic value of AI-based Stress-GCS (Fig. 1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Cardiovascular Diseases Supplements
Archives of Cardiovascular Diseases Supplements CARDIAC & CARDIOVASCULAR SYSTEMS-
自引率
0.00%
发文量
508
期刊介绍: Archives of Cardiovascular Diseases Supplements is the official journal of the French Society of Cardiology. The journal publishes original peer-reviewed clinical and research articles, epidemiological studies, new methodological clinical approaches, review articles, editorials, and Images in cardiovascular medicine. The topics covered include coronary artery and valve diseases, interventional and pediatric cardiology, cardiovascular surgery, cardiomyopathy and heart failure, arrhythmias and stimulation, cardiovascular imaging, vascular medicine and hypertension, epidemiology and risk factors, and large multicenter studies. Additionally, Archives of Cardiovascular Diseases also publishes abstracts of papers presented at the annual sessions of the Journées Européennes de la Société Française de Cardiologie and the guidelines edited by the French Society of Cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信