{"title":"c -极小纯c集的分类","authors":"Françoise Delon , Marie-Hélène Mourgues","doi":"10.1016/j.apal.2023.103375","DOIUrl":null,"url":null,"abstract":"<div><p>We classify all <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal <em>C</em>-sets up to elementary equivalence. As usual the Ryll-Nardzewski Theorem makes the classification of indiscernible <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical <em>C</em>-minimal sets as a first step. We first define <em>solvable</em> good trees, via a finite induction. The trees involved in initial and induction steps have a set of nodes, either consisting of a singleton, or having dense branches without endpoints and the same number of branches at each node. The class of <em>colored</em> good trees is the elementary class of solvable good trees. We show that a pure <em>C</em>-set <em>M</em> is indiscernible, finite or <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal iff its canonical tree <span><math><mi>T</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is a colored good tree. The classification of general <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal <em>C</em>-sets is done via finite trees with labeled vertices and edges, where labels are natural numbers, or infinity and complete theories of indiscernible, <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical or finite, and <em>C</em>-minimal <em>C</em>-sets.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 2","pages":"Article 103375"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of ℵ0-categorical C-minimal pure C-sets\",\"authors\":\"Françoise Delon , Marie-Hélène Mourgues\",\"doi\":\"10.1016/j.apal.2023.103375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify all <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal <em>C</em>-sets up to elementary equivalence. As usual the Ryll-Nardzewski Theorem makes the classification of indiscernible <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical <em>C</em>-minimal sets as a first step. We first define <em>solvable</em> good trees, via a finite induction. The trees involved in initial and induction steps have a set of nodes, either consisting of a singleton, or having dense branches without endpoints and the same number of branches at each node. The class of <em>colored</em> good trees is the elementary class of solvable good trees. We show that a pure <em>C</em>-set <em>M</em> is indiscernible, finite or <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal iff its canonical tree <span><math><mi>T</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is a colored good tree. The classification of general <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical and <em>C</em>-minimal <em>C</em>-sets is done via finite trees with labeled vertices and edges, where labels are natural numbers, or infinity and complete theories of indiscernible, <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-categorical or finite, and <em>C</em>-minimal <em>C</em>-sets.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 2\",\"pages\":\"Article 103375\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016800722300132X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722300132X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Classification of ℵ0-categorical C-minimal pure C-sets
We classify all -categorical and C-minimal C-sets up to elementary equivalence. As usual the Ryll-Nardzewski Theorem makes the classification of indiscernible -categorical C-minimal sets as a first step. We first define solvable good trees, via a finite induction. The trees involved in initial and induction steps have a set of nodes, either consisting of a singleton, or having dense branches without endpoints and the same number of branches at each node. The class of colored good trees is the elementary class of solvable good trees. We show that a pure C-set M is indiscernible, finite or -categorical and C-minimal iff its canonical tree is a colored good tree. The classification of general -categorical and C-minimal C-sets is done via finite trees with labeled vertices and edges, where labels are natural numbers, or infinity and complete theories of indiscernible, -categorical or finite, and C-minimal C-sets.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.