代数的几何等价性

Pub Date : 2023-10-06 DOI:10.1016/j.apal.2023.103386
M. Shahryari
{"title":"代数的几何等价性","authors":"M. Shahryari","doi":"10.1016/j.apal.2023.103386","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that an algebra is geometrically equivalent to any of its filterpowers if it is <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-compact. We present an explicit description for the radicals of systems of equation over an algebra <em>A</em> and then we prove the above assertion by an elementary new argument. Then we define <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span>-compact algebras and <em>κ</em>-filterpowers for any infinite cardinal <em>κ</em>. We show that any <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span>-compact algebra is geometric equivalent to its <em>κ</em>-filterpowers. As there is no algebraic description of the <em>κ</em>-quasivariety generated by an algebra, the classical argument can not be applied in this case, while our proof still works.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the geometric equivalence of algebras\",\"authors\":\"M. Shahryari\",\"doi\":\"10.1016/j.apal.2023.103386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that an algebra is geometrically equivalent to any of its filterpowers if it is <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>-compact. We present an explicit description for the radicals of systems of equation over an algebra <em>A</em> and then we prove the above assertion by an elementary new argument. Then we define <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span>-compact algebras and <em>κ</em>-filterpowers for any infinite cardinal <em>κ</em>. We show that any <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span>-compact algebra is geometric equivalent to its <em>κ</em>-filterpowers. As there is no algebraic description of the <em>κ</em>-quasivariety generated by an algebra, the classical argument can not be applied in this case, while our proof still works.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223001434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,如果代数是qω-紧致的,那么它在几何上等价于它的任何滤波器功率。我们给出了代数A上方程组的根的一个显式描述,然后用一个初等的新论点证明了上述断言。然后我们定义了任意无穷基数κ的qκ-紧代数和κ-滤子幂。我们证明了任何qκ-紧代数都与其κ-滤波器功率几何等价。由于代数生成的κ-拟变种没有代数描述,因此经典论证不能应用于这种情况,而我们的证明仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the geometric equivalence of algebras

It is known that an algebra is geometrically equivalent to any of its filterpowers if it is qω-compact. We present an explicit description for the radicals of systems of equation over an algebra A and then we prove the above assertion by an elementary new argument. Then we define qκ-compact algebras and κ-filterpowers for any infinite cardinal κ. We show that any qκ-compact algebra is geometric equivalent to its κ-filterpowers. As there is no algebraic description of the κ-quasivariety generated by an algebra, the classical argument can not be applied in this case, while our proof still works.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信