Alexander I. Bufetov , Gabriel Nivasch , Fedor Pakhomov
{"title":"广义可熔数及其序数","authors":"Alexander I. Bufetov , Gabriel Nivasch , Fedor Pakhomov","doi":"10.1016/j.apal.2023.103355","DOIUrl":null,"url":null,"abstract":"<div><p>Erickson defined the <em>fusible numbers</em> as a set <span><math><mi>F</mi></math></span> of reals generated by repeated application of the function <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Erickson, Nivasch, and Xu showed that <span><math><mi>F</mi></math></span> is well ordered, with order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also investigated a recursively defined function <span><math><mi>M</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>. They showed that the set of points of discontinuity of <em>M</em> is a subset of <span><math><mi>F</mi></math></span> of order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also showed that, although <em>M</em> is a total function on <span><math><mi>R</mi></math></span>, the fact that the restriction of <em>M</em> to <span><math><mi>Q</mi></math></span> is total is not provable in first-order Peano arithmetic <span><math><mi>PA</mi></math></span>.</p><p>In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets <span><math><mi>F</mi></math></span> of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>.</p><p>The most straightforward generalization of <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> to an <em>n</em>-ary function is the function <span><math><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. We show that this function generates a set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose order type is just <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>. For this, we develop recursively defined functions <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> naturally generalizing the function <em>M</em>.</p><p>Furthermore, we prove that for any <em>linear</em> function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>, the order type of the resulting <span><math><mi>F</mi></math></span> is at most <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>.</p><p>Finally, we show that there do exist continuous functions <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> for which the order types of the resulting sets <span><math><mi>F</mi></math></span> approach the small Veblen ordinal.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 1","pages":"Article 103355"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized fusible numbers and their ordinals\",\"authors\":\"Alexander I. Bufetov , Gabriel Nivasch , Fedor Pakhomov\",\"doi\":\"10.1016/j.apal.2023.103355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Erickson defined the <em>fusible numbers</em> as a set <span><math><mi>F</mi></math></span> of reals generated by repeated application of the function <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Erickson, Nivasch, and Xu showed that <span><math><mi>F</mi></math></span> is well ordered, with order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also investigated a recursively defined function <span><math><mi>M</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>. They showed that the set of points of discontinuity of <em>M</em> is a subset of <span><math><mi>F</mi></math></span> of order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also showed that, although <em>M</em> is a total function on <span><math><mi>R</mi></math></span>, the fact that the restriction of <em>M</em> to <span><math><mi>Q</mi></math></span> is total is not provable in first-order Peano arithmetic <span><math><mi>PA</mi></math></span>.</p><p>In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets <span><math><mi>F</mi></math></span> of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>.</p><p>The most straightforward generalization of <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> to an <em>n</em>-ary function is the function <span><math><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. We show that this function generates a set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose order type is just <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>. For this, we develop recursively defined functions <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> naturally generalizing the function <em>M</em>.</p><p>Furthermore, we prove that for any <em>linear</em> function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>, the order type of the resulting <span><math><mi>F</mi></math></span> is at most <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>.</p><p>Finally, we show that there do exist continuous functions <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> for which the order types of the resulting sets <span><math><mi>F</mi></math></span> approach the small Veblen ordinal.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 1\",\"pages\":\"Article 103355\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223001124\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Erickson defined the fusible numbers as a set of reals generated by repeated application of the function . Erickson, Nivasch, and Xu showed that is well ordered, with order type . They also investigated a recursively defined function . They showed that the set of points of discontinuity of M is a subset of of order type . They also showed that, although M is a total function on , the fact that the restriction of M to is total is not provable in first-order Peano arithmetic .
In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function .
The most straightforward generalization of to an n-ary function is the function . We show that this function generates a set whose order type is just . For this, we develop recursively defined functions naturally generalizing the function M.
Furthermore, we prove that for any linear function , the order type of the resulting is at most .
Finally, we show that there do exist continuous functions for which the order types of the resulting sets approach the small Veblen ordinal.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.