广义可熔数及其序数

IF 0.6 2区 数学 Q2 LOGIC
Alexander I. Bufetov , Gabriel Nivasch , Fedor Pakhomov
{"title":"广义可熔数及其序数","authors":"Alexander I. Bufetov ,&nbsp;Gabriel Nivasch ,&nbsp;Fedor Pakhomov","doi":"10.1016/j.apal.2023.103355","DOIUrl":null,"url":null,"abstract":"<div><p>Erickson defined the <em>fusible numbers</em> as a set <span><math><mi>F</mi></math></span> of reals generated by repeated application of the function <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Erickson, Nivasch, and Xu showed that <span><math><mi>F</mi></math></span> is well ordered, with order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also investigated a recursively defined function <span><math><mi>M</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>. They showed that the set of points of discontinuity of <em>M</em> is a subset of <span><math><mi>F</mi></math></span> of order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also showed that, although <em>M</em> is a total function on <span><math><mi>R</mi></math></span>, the fact that the restriction of <em>M</em> to <span><math><mi>Q</mi></math></span> is total is not provable in first-order Peano arithmetic <span><math><mi>PA</mi></math></span>.</p><p>In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets <span><math><mi>F</mi></math></span> of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>.</p><p>The most straightforward generalization of <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> to an <em>n</em>-ary function is the function <span><math><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. We show that this function generates a set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose order type is just <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>. For this, we develop recursively defined functions <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> naturally generalizing the function <em>M</em>.</p><p>Furthermore, we prove that for any <em>linear</em> function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>, the order type of the resulting <span><math><mi>F</mi></math></span> is at most <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>.</p><p>Finally, we show that there do exist continuous functions <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> for which the order types of the resulting sets <span><math><mi>F</mi></math></span> approach the small Veblen ordinal.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 1","pages":"Article 103355"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized fusible numbers and their ordinals\",\"authors\":\"Alexander I. Bufetov ,&nbsp;Gabriel Nivasch ,&nbsp;Fedor Pakhomov\",\"doi\":\"10.1016/j.apal.2023.103355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Erickson defined the <em>fusible numbers</em> as a set <span><math><mi>F</mi></math></span> of reals generated by repeated application of the function <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Erickson, Nivasch, and Xu showed that <span><math><mi>F</mi></math></span> is well ordered, with order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also investigated a recursively defined function <span><math><mi>M</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>. They showed that the set of points of discontinuity of <em>M</em> is a subset of <span><math><mi>F</mi></math></span> of order type <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. They also showed that, although <em>M</em> is a total function on <span><math><mi>R</mi></math></span>, the fact that the restriction of <em>M</em> to <span><math><mi>Q</mi></math></span> is total is not provable in first-order Peano arithmetic <span><math><mi>PA</mi></math></span>.</p><p>In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets <span><math><mi>F</mi></math></span> of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>.</p><p>The most straightforward generalization of <span><math><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> to an <em>n</em>-ary function is the function <span><math><mfrac><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. We show that this function generates a set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whose order type is just <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>. For this, we develop recursively defined functions <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> naturally generalizing the function <em>M</em>.</p><p>Furthermore, we prove that for any <em>linear</em> function <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span>, the order type of the resulting <span><math><mi>F</mi></math></span> is at most <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo></math></span>.</p><p>Finally, we show that there do exist continuous functions <span><math><mi>g</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> for which the order types of the resulting sets <span><math><mi>F</mi></math></span> approach the small Veblen ordinal.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 1\",\"pages\":\"Article 103355\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223001124\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

Erickson将可熔数定义为通过重复应用函数x+y+12生成的实数集F。Erickson、Nivasch和Xu证明了F是有序的,其有序类型为ε0。他们还研究了一个递归定义的函数M:R→R。他们证明了M的不连续点集是阶型ε0的F的子集。他们还证明,尽管M是R上的一个全函数,但在一阶Peano算术PA中,M对Q的限制是全的这一事实是不可证明的。在本文中,我们探讨了类似方法是否可以产生更高阶类型的良序集F的问题(由Friedman提出)。正如Friedman所指出的,Kruskal树定理为通过重复应用单调函数g:Rn以类似方式生成的任何集合的阶类型产生了小Veblen序数的上界→R.x+y+12对n元函数最直接的推广是函数x1+…+xn+1n。我们证明了这个函数生成了一个集合Fn,它的阶型恰好是φn-1(0)。为此,我们开发了递归定义的函数Mn:R→R自然地推广了函数M。此外,我们证明了对于任何线性函数g:Rn→R、 得到的F的阶型至多为φn−1(0)。最后,我们证明了确实存在连续函数g:Rn→R,其结果集F的阶类型接近小的Veblen序数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized fusible numbers and their ordinals

Erickson defined the fusible numbers as a set F of reals generated by repeated application of the function x+y+12. Erickson, Nivasch, and Xu showed that F is well ordered, with order type ε0. They also investigated a recursively defined function M:RR. They showed that the set of points of discontinuity of M is a subset of F of order type ε0. They also showed that, although M is a total function on R, the fact that the restriction of M to Q is total is not provable in first-order Peano arithmetic PA.

In this paper we explore the problem (raised by Friedman) of whether similar approaches can yield well-ordered sets F of larger order types. As Friedman pointed out, Kruskal's tree theorem yields an upper bound of the small Veblen ordinal for the order type of any set generated in a similar way by repeated application of a monotone function g:RnR.

The most straightforward generalization of x+y+12 to an n-ary function is the function x1++xn+1n. We show that this function generates a set Fn whose order type is just φn1(0). For this, we develop recursively defined functions Mn:RR naturally generalizing the function M.

Furthermore, we prove that for any linear function g:RnR, the order type of the resulting F is at most φn1(0).

Finally, we show that there do exist continuous functions g:RnR for which the order types of the resulting sets F approach the small Veblen ordinal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信