PFA模型上一些紧致原则的不可破坏性

IF 0.6 2区 数学 Q2 LOGIC
Radek Honzik , Chris Lambie-Hanson , Šárka Stejskalová
{"title":"PFA模型上一些紧致原则的不可破坏性","authors":"Radek Honzik ,&nbsp;Chris Lambie-Hanson ,&nbsp;Šárka Stejskalová","doi":"10.1016/j.apal.2023.103359","DOIUrl":null,"url":null,"abstract":"<div><p>We show that <span><math><mi>PFA</mi></math></span> (Proper Forcing Axiom) implies that adding any number of Cohen subsets of <em>ω</em> will not add an <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Aronszajn tree or a weak <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa tree, and moreover no <em>σ</em>-centered forcing can add a weak <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa tree (a tree of height and size <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> with at least <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> cofinal branches). This partially answers an open problem whether ccc forcings can add <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Aronszajn trees or <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa trees (with <span><math><mo>¬</mo><msub><mrow><mo>□</mo></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> in the latter case).</p><p>We actually prove more: We show that a consequence of <span><math><mi>PFA</mi></math></span>, namely the <em>guessing model principle</em>, <span><math><mi>GMP</mi></math></span>, which is equivalent to the <em>ineffable slender tree property</em>, <span><math><mi>ISP</mi></math></span>, is preserved by adding any number of Cohen subsets of <em>ω</em>. And moreover, <span><math><mi>GMP</mi></math></span> implies that no <em>σ</em>-centered forcing can add a weak <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa tree (see Section <span>2.1</span> for definitions).</p><p>For more generality, we study variations of the principle <span><math><mi>GMP</mi></math></span> at higher cardinals and the indestructibility consequences they entail, and as applications we answer a question of Mohammadpour about guessing models at weakly but not strongly inaccessible cardinals and show that there is a model in which there are no weak <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-Kurepa trees and no <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>-Aronszajn trees.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 1","pages":"Article 103359"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indestructibility of some compactness principles over models of PFA\",\"authors\":\"Radek Honzik ,&nbsp;Chris Lambie-Hanson ,&nbsp;Šárka Stejskalová\",\"doi\":\"10.1016/j.apal.2023.103359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that <span><math><mi>PFA</mi></math></span> (Proper Forcing Axiom) implies that adding any number of Cohen subsets of <em>ω</em> will not add an <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Aronszajn tree or a weak <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa tree, and moreover no <em>σ</em>-centered forcing can add a weak <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa tree (a tree of height and size <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> with at least <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> cofinal branches). This partially answers an open problem whether ccc forcings can add <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Aronszajn trees or <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa trees (with <span><math><mo>¬</mo><msub><mrow><mo>□</mo></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> in the latter case).</p><p>We actually prove more: We show that a consequence of <span><math><mi>PFA</mi></math></span>, namely the <em>guessing model principle</em>, <span><math><mi>GMP</mi></math></span>, which is equivalent to the <em>ineffable slender tree property</em>, <span><math><mi>ISP</mi></math></span>, is preserved by adding any number of Cohen subsets of <em>ω</em>. And moreover, <span><math><mi>GMP</mi></math></span> implies that no <em>σ</em>-centered forcing can add a weak <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Kurepa tree (see Section <span>2.1</span> for definitions).</p><p>For more generality, we study variations of the principle <span><math><mi>GMP</mi></math></span> at higher cardinals and the indestructibility consequences they entail, and as applications we answer a question of Mohammadpour about guessing models at weakly but not strongly inaccessible cardinals and show that there is a model in which there are no weak <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-Kurepa trees and no <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mi>ω</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>-Aronszajn trees.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 1\",\"pages\":\"Article 103359\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223001161\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001161","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了PFA(Proper Forcing Axiom)意味着添加任意数量的ω的Cohen子集不会添加ω2-Aronszajn树或弱ω1-Kurepa树,而且没有σ-中心强迫可以添加弱ω1-Kurepa树(高度和大小为ω1且至少有ω2共尾分支的树)。这部分回答了一个悬而未决的问题,即ccc强迫是否可以添加ω2-Aronszajn树或ω1-Kurepa树(□在后一种情况下为ω1)。我们实际上证明了更多:我们证明了PFA的一个结果,即猜测模型原理GMP,它等价于无法形容的细长树性质ISP,通过添加ω的任意数量的Cohen子集来保持。此外,GMP意味着没有以σ为中心的强迫可以添加弱ω1-Kurepa树(定义见第2.1节)。为了更普遍,我们研究了原则GMP在更高基数下的变化及其带来的不可破坏性后果,作为应用,我们回答了Mohammadpour关于在弱但非强不可访问基数上猜测模型的问题,并证明了存在一个不存在弱ℵω+1-Kurepa树和noℵω+2-Aronszajn树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indestructibility of some compactness principles over models of PFA

We show that PFA (Proper Forcing Axiom) implies that adding any number of Cohen subsets of ω will not add an ω2-Aronszajn tree or a weak ω1-Kurepa tree, and moreover no σ-centered forcing can add a weak ω1-Kurepa tree (a tree of height and size ω1 with at least ω2 cofinal branches). This partially answers an open problem whether ccc forcings can add ω2-Aronszajn trees or ω1-Kurepa trees (with ¬ω1 in the latter case).

We actually prove more: We show that a consequence of PFA, namely the guessing model principle, GMP, which is equivalent to the ineffable slender tree property, ISP, is preserved by adding any number of Cohen subsets of ω. And moreover, GMP implies that no σ-centered forcing can add a weak ω1-Kurepa tree (see Section 2.1 for definitions).

For more generality, we study variations of the principle GMP at higher cardinals and the indestructibility consequences they entail, and as applications we answer a question of Mohammadpour about guessing models at weakly but not strongly inaccessible cardinals and show that there is a model in which there are no weak ω+1-Kurepa trees and no ω+2-Aronszajn trees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信