超氧化物歧化酶促进小麦早花。

Hao-yu Guo , Yong-jie Liu , Shao-hua Yuan , Jie-ru Yue, Yan-mei Li, Xiang-zheng Liao, Sheng-kai Ying, Zi-han Liu, Jian-fang Bai, Li-ping Zhang
{"title":"超氧化物歧化酶促进小麦早花。","authors":"Hao-yu Guo ,&nbsp;Yong-jie Liu ,&nbsp;Shao-hua Yuan ,&nbsp;Jie-ru Yue,&nbsp;Yan-mei Li,&nbsp;Xiang-zheng Liao,&nbsp;Sheng-kai Ying,&nbsp;Zi-han Liu,&nbsp;Jian-fang Bai,&nbsp;Li-ping Zhang","doi":"10.1016/j.agrcom.2023.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Superoxide dismutase (SOD) is a first-line-defense antioxidant enzyme that plays a crucial role in scavenging reactive oxygen species (ROS) to maintain homeostasis in plants. SOD catalyzes the conversion of superoxide (O<sub>2</sub><sup>-</sup>) into oxygen (O<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and besides its role in stress resistance, SOD also impacts plant growth and development. Here, we cloned and characterized a <em>TaCSOD</em> gene from the wheat photo-thermosensitive genic male sterile line BS366. Phylogenetic and motif analyses identified <em>TaCSOD</em> as a Cu/Zn-dependent SOD due to the presence of conserved Cu<sup>2+</sup> and Zn<sup>2+</sup> binding sites. Overexpression of <em>TaCSOD</em> enhanced drought and salt tolerance in both <em>Arabidopsis thaliana</em> and yeast. In addition, seed germination rate, primary root length, and fresh weight of the transgenic plants were higher than those of the wild-type under drought- and salt-stressed conditions. The <em>Arabidopsis TaCSOD</em> overexpression lines also exhibited an early flowering phenotype, with fewer leaves and shorter flowering period. Nitroblue tetrazolium (NBT) and 3, 3-diaminobenzidine (DAB) staining, along with transcriptome analysis, demonstrated that <em>TaCSOD</em> regulates ROS homeostasis and flowering time through carbohydrate signaling, aging, vernalization, and gibberellic acid pathways. Our study provides valuable insights into the functions of <em>SOD</em> genes in regulating flowering through the regulation of ROS homeostasis in plants.</p></div>","PeriodicalId":100065,"journal":{"name":"Agriculture Communications","volume":"1 1","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superoxide dismutase promotes early flowering in Triticum aestivum L.\",\"authors\":\"Hao-yu Guo ,&nbsp;Yong-jie Liu ,&nbsp;Shao-hua Yuan ,&nbsp;Jie-ru Yue,&nbsp;Yan-mei Li,&nbsp;Xiang-zheng Liao,&nbsp;Sheng-kai Ying,&nbsp;Zi-han Liu,&nbsp;Jian-fang Bai,&nbsp;Li-ping Zhang\",\"doi\":\"10.1016/j.agrcom.2023.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Superoxide dismutase (SOD) is a first-line-defense antioxidant enzyme that plays a crucial role in scavenging reactive oxygen species (ROS) to maintain homeostasis in plants. SOD catalyzes the conversion of superoxide (O<sub>2</sub><sup>-</sup>) into oxygen (O<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and besides its role in stress resistance, SOD also impacts plant growth and development. Here, we cloned and characterized a <em>TaCSOD</em> gene from the wheat photo-thermosensitive genic male sterile line BS366. Phylogenetic and motif analyses identified <em>TaCSOD</em> as a Cu/Zn-dependent SOD due to the presence of conserved Cu<sup>2+</sup> and Zn<sup>2+</sup> binding sites. Overexpression of <em>TaCSOD</em> enhanced drought and salt tolerance in both <em>Arabidopsis thaliana</em> and yeast. In addition, seed germination rate, primary root length, and fresh weight of the transgenic plants were higher than those of the wild-type under drought- and salt-stressed conditions. The <em>Arabidopsis TaCSOD</em> overexpression lines also exhibited an early flowering phenotype, with fewer leaves and shorter flowering period. Nitroblue tetrazolium (NBT) and 3, 3-diaminobenzidine (DAB) staining, along with transcriptome analysis, demonstrated that <em>TaCSOD</em> regulates ROS homeostasis and flowering time through carbohydrate signaling, aging, vernalization, and gibberellic acid pathways. Our study provides valuable insights into the functions of <em>SOD</em> genes in regulating flowering through the regulation of ROS homeostasis in plants.</p></div>\",\"PeriodicalId\":100065,\"journal\":{\"name\":\"Agriculture Communications\",\"volume\":\"1 1\",\"pages\":\"Article 100007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949798123000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949798123000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超氧化物歧化酶(SOD)是一种第一道防线的抗氧化酶,在清除活性氧(ROS)以维持植物体内平衡方面发挥着至关重要的作用。超氧化物歧化酶催化超氧化物(O2-)转化为氧气(O2)和过氧化氢(H2O2),除在抗逆性中发挥作用外,还影响植物的生长发育。本文从小麦光温敏核不育系BS366中克隆并鉴定了一个TaCSOD基因。系统发育和基序分析表明,由于存在保守的Cu2+和Zn2+结合位点,TaCSOD是一种Cu/Zn依赖性SOD。TaCSOD的过表达增强了拟南芥和酵母的耐旱性和耐盐性。此外,在干旱和盐胁迫条件下,转基因植物的种子发芽率、主根长度和鲜重均高于野生型。拟南芥TaCSOD过表达系也表现出早花表型,叶片较少,花期较短。硝基蓝四氮唑(NBT)和3,3-二氨基联苯胺(DAB)染色以及转录组分析表明,TaCSOD通过碳水化合物信号传导、衰老、春化和赤霉酸途径调节ROS稳态和开花时间。我们的研究为SOD基因通过调节植物体内ROS稳态来调节开花的功能提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superoxide dismutase promotes early flowering in Triticum aestivum L.

Superoxide dismutase (SOD) is a first-line-defense antioxidant enzyme that plays a crucial role in scavenging reactive oxygen species (ROS) to maintain homeostasis in plants. SOD catalyzes the conversion of superoxide (O2-) into oxygen (O2) and hydrogen peroxide (H2O2), and besides its role in stress resistance, SOD also impacts plant growth and development. Here, we cloned and characterized a TaCSOD gene from the wheat photo-thermosensitive genic male sterile line BS366. Phylogenetic and motif analyses identified TaCSOD as a Cu/Zn-dependent SOD due to the presence of conserved Cu2+ and Zn2+ binding sites. Overexpression of TaCSOD enhanced drought and salt tolerance in both Arabidopsis thaliana and yeast. In addition, seed germination rate, primary root length, and fresh weight of the transgenic plants were higher than those of the wild-type under drought- and salt-stressed conditions. The Arabidopsis TaCSOD overexpression lines also exhibited an early flowering phenotype, with fewer leaves and shorter flowering period. Nitroblue tetrazolium (NBT) and 3, 3-diaminobenzidine (DAB) staining, along with transcriptome analysis, demonstrated that TaCSOD regulates ROS homeostasis and flowering time through carbohydrate signaling, aging, vernalization, and gibberellic acid pathways. Our study provides valuable insights into the functions of SOD genes in regulating flowering through the regulation of ROS homeostasis in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信