{"title":"在环境和可持续气候行动中碳捕获和直接空气捕获的吸附技术和应用","authors":"Olusola Olaitan Ayeleru , Helen Uchenna Modekwe , Oluwatayo Racheal Onisuru , Chinemerem Ruth Ohoro , Christianah Aarinola Akinnawo , Peter Apata Olubambi","doi":"10.1016/j.scca.2023.100029","DOIUrl":null,"url":null,"abstract":"<div><p>The contribution of greenhouse gas and anthropogenic CO<sub>2</sub> to climate change is an undeniably issue that needs urgent attention from the environmental point of view. Global warming, a consequence of continued CO<sub>2</sub> emissions will gradually result in ecosystem disruption and drought. With the increasing problem of greenhouse gas (GHG) and the established environmentally unfriendly consequences associated with it, carbon capture and storage (CCS) was proposed as a measure to successfully reduce carbon footprints and a process of choice in proffering solutions to this challenge. To meet the Paris agreement's target of maintaining the global temperature rise below 2 °C necessitates the capture and removal of up to 20 Gt CO<sub>2</sub> per annum by the end of the century. However, going by the current global CO<sub>2</sub> capture and storage capacity of 0.0385 Gt CO<sub>2</sub>/annum (including the current direct air capture (DAC) capacity of 9,000 tons CO<sub>2</sub>/annum), it will take close to 21,000 years to achieve this set goal. Hence, the need to adopt sustainable low-temperature sorbent technology with efficient adsorption capabilities that will meet up with the bourgeoning operating cost and energy demand for DAC technology. In this review, sustainable and emerging adsorbent materials and technologies employed in carbon capture and storage were highlighted. Also, economic, and environmental benefits and public perception of carbon capture technology were enumerated.</p></div>","PeriodicalId":101195,"journal":{"name":"Sustainable Chemistry for Climate Action","volume":"3 ","pages":"Article 100029"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adsorbent technologies and applications for carbon capture, and direct air capture in environmental perspective and sustainable climate action\",\"authors\":\"Olusola Olaitan Ayeleru , Helen Uchenna Modekwe , Oluwatayo Racheal Onisuru , Chinemerem Ruth Ohoro , Christianah Aarinola Akinnawo , Peter Apata Olubambi\",\"doi\":\"10.1016/j.scca.2023.100029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The contribution of greenhouse gas and anthropogenic CO<sub>2</sub> to climate change is an undeniably issue that needs urgent attention from the environmental point of view. Global warming, a consequence of continued CO<sub>2</sub> emissions will gradually result in ecosystem disruption and drought. With the increasing problem of greenhouse gas (GHG) and the established environmentally unfriendly consequences associated with it, carbon capture and storage (CCS) was proposed as a measure to successfully reduce carbon footprints and a process of choice in proffering solutions to this challenge. To meet the Paris agreement's target of maintaining the global temperature rise below 2 °C necessitates the capture and removal of up to 20 Gt CO<sub>2</sub> per annum by the end of the century. However, going by the current global CO<sub>2</sub> capture and storage capacity of 0.0385 Gt CO<sub>2</sub>/annum (including the current direct air capture (DAC) capacity of 9,000 tons CO<sub>2</sub>/annum), it will take close to 21,000 years to achieve this set goal. Hence, the need to adopt sustainable low-temperature sorbent technology with efficient adsorption capabilities that will meet up with the bourgeoning operating cost and energy demand for DAC technology. In this review, sustainable and emerging adsorbent materials and technologies employed in carbon capture and storage were highlighted. Also, economic, and environmental benefits and public perception of carbon capture technology were enumerated.</p></div>\",\"PeriodicalId\":101195,\"journal\":{\"name\":\"Sustainable Chemistry for Climate Action\",\"volume\":\"3 \",\"pages\":\"Article 100029\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry for Climate Action\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772826923000184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for Climate Action","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772826923000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorbent technologies and applications for carbon capture, and direct air capture in environmental perspective and sustainable climate action
The contribution of greenhouse gas and anthropogenic CO2 to climate change is an undeniably issue that needs urgent attention from the environmental point of view. Global warming, a consequence of continued CO2 emissions will gradually result in ecosystem disruption and drought. With the increasing problem of greenhouse gas (GHG) and the established environmentally unfriendly consequences associated with it, carbon capture and storage (CCS) was proposed as a measure to successfully reduce carbon footprints and a process of choice in proffering solutions to this challenge. To meet the Paris agreement's target of maintaining the global temperature rise below 2 °C necessitates the capture and removal of up to 20 Gt CO2 per annum by the end of the century. However, going by the current global CO2 capture and storage capacity of 0.0385 Gt CO2/annum (including the current direct air capture (DAC) capacity of 9,000 tons CO2/annum), it will take close to 21,000 years to achieve this set goal. Hence, the need to adopt sustainable low-temperature sorbent technology with efficient adsorption capabilities that will meet up with the bourgeoning operating cost and energy demand for DAC technology. In this review, sustainable and emerging adsorbent materials and technologies employed in carbon capture and storage were highlighted. Also, economic, and environmental benefits and public perception of carbon capture technology were enumerated.