Wolf Schweitzer, Lars Ebert, Michael Thali, Stephan Bolliger
{"title":"图解论证ct扫描整辆车的法医调查弹孔,缺陷,碎片和可能的轨迹","authors":"Wolf Schweitzer, Lars Ebert, Michael Thali, Stephan Bolliger","doi":"10.1016/j.fri.2023.200562","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary documentation of a car with bullet defects after a shooting incident can secure the usual tracks and gunshot residue, take photographs, and use trajectory rods and probes. Since the advent of the “XXL-CT -Scanner” (Fraunhofer Institute, Germany), we have wondered if the advantages of volume scanning CT, already noted for forensic pathology, could be applied to cars. To this end, we damaged a small 3D-printed car model with an electric drill and added CT -dense material with a soldering iron, simulating linearly configured defect morphologies with metal particles. This model was CT -scanned and the resulting data visualized to illustrate how these visualizations can support reconstructive visualization of trajectories. Performing a real XXL-CT scan of a bullet-riddled car requires extensive preparation, transportation, and other logistical measures that are costly and time-consuming. Nonetheless, we suggest that this is a worthwhile research direction to explore.</p></div>","PeriodicalId":40763,"journal":{"name":"Forensic Imaging","volume":"35 ","pages":"Article 200562"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Illustrated argument for CT-scanning a whole car for the forensic investigation of projectile holes, defects, fragments and possible trajectories\",\"authors\":\"Wolf Schweitzer, Lars Ebert, Michael Thali, Stephan Bolliger\",\"doi\":\"10.1016/j.fri.2023.200562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contemporary documentation of a car with bullet defects after a shooting incident can secure the usual tracks and gunshot residue, take photographs, and use trajectory rods and probes. Since the advent of the “XXL-CT -Scanner” (Fraunhofer Institute, Germany), we have wondered if the advantages of volume scanning CT, already noted for forensic pathology, could be applied to cars. To this end, we damaged a small 3D-printed car model with an electric drill and added CT -dense material with a soldering iron, simulating linearly configured defect morphologies with metal particles. This model was CT -scanned and the resulting data visualized to illustrate how these visualizations can support reconstructive visualization of trajectories. Performing a real XXL-CT scan of a bullet-riddled car requires extensive preparation, transportation, and other logistical measures that are costly and time-consuming. Nonetheless, we suggest that this is a worthwhile research direction to explore.</p></div>\",\"PeriodicalId\":40763,\"journal\":{\"name\":\"Forensic Imaging\",\"volume\":\"35 \",\"pages\":\"Article 200562\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666225623000313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666225623000313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Illustrated argument for CT-scanning a whole car for the forensic investigation of projectile holes, defects, fragments and possible trajectories
Contemporary documentation of a car with bullet defects after a shooting incident can secure the usual tracks and gunshot residue, take photographs, and use trajectory rods and probes. Since the advent of the “XXL-CT -Scanner” (Fraunhofer Institute, Germany), we have wondered if the advantages of volume scanning CT, already noted for forensic pathology, could be applied to cars. To this end, we damaged a small 3D-printed car model with an electric drill and added CT -dense material with a soldering iron, simulating linearly configured defect morphologies with metal particles. This model was CT -scanned and the resulting data visualized to illustrate how these visualizations can support reconstructive visualization of trajectories. Performing a real XXL-CT scan of a bullet-riddled car requires extensive preparation, transportation, and other logistical measures that are costly and time-consuming. Nonetheless, we suggest that this is a worthwhile research direction to explore.