二部图和分裂图的Mostar指数最大化

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Štefko Miklavič , Johannes Pardey , Dieter Rautenbach , Florian Werner
{"title":"二部图和分裂图的Mostar指数最大化","authors":"Štefko Miklavič ,&nbsp;Johannes Pardey ,&nbsp;Dieter Rautenbach ,&nbsp;Florian Werner","doi":"10.1016/j.disopt.2023.100768","DOIUrl":null,"url":null,"abstract":"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mspace></mspace><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span><span>. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order </span><span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>18</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and that the Mostar index of split graphs of order <span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>27</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100768"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximizing the Mostar index for bipartite graphs and split graphs\",\"authors\":\"Štefko Miklavič ,&nbsp;Johannes Pardey ,&nbsp;Dieter Rautenbach ,&nbsp;Florian Werner\",\"doi\":\"10.1016/j.disopt.2023.100768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Došlić et al. defined the Mostar index of a graph <span><math><mi>G</mi></math></span> as <span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mspace></mspace><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where, for an edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>, the term <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denotes the number of vertices of <span><math><mi>G</mi></math></span> that have a smaller distance in <span><math><mi>G</mi></math></span> to <span><math><mi>u</mi></math></span> than to <span><math><mi>v</mi></math></span><span>. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order </span><span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow><mrow><mn>18</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and that the Mostar index of split graphs of order <span><math><mi>n</mi></math></span> is at most <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>27</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"48 \",\"pages\":\"Article 100768\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528623000105\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528623000105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

Došlić等人。定义图G的Mostar指数为∑uv∈E(G)|nG(u,v)−nG(v,u)|,其中,对于G的边uv,项nG(u,v)表示G的顶点数,这些顶点在G中与u的距离小于与v的距离。,我们证明了n阶二部图的Mostar指数至多为318n3,n阶分裂图的Mosstar指数至多为427n3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing the Mostar index for bipartite graphs and split graphs

Došlić et al. defined the Mostar index of a graph G as uvE(G)|nG(u,v)nG(v,u)|, where, for an edge uv of G, the term nG(u,v) denotes the number of vertices of G that have a smaller distance in G to u than to v. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order n is at most 318n3, and that the Mostar index of split graphs of order n is at most 427n3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信