{"title":"有界变差二值序列的多面体","authors":"Christoph Buchheim, Maja Hügging","doi":"10.1016/j.disopt.2023.100776","DOIUrl":null,"url":null,"abstract":"<div><p><span>We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length </span><span><math><mi>n</mi></math></span><span> with bounded variation<span>, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems<span> subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of </span></span></span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.</p><p>A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"48 ","pages":"Article 100776"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The polytope of binary sequences with bounded variation\",\"authors\":\"Christoph Buchheim, Maja Hügging\",\"doi\":\"10.1016/j.disopt.2023.100776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length </span><span><math><mi>n</mi></math></span><span> with bounded variation<span>, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems<span> subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of </span></span></span><span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.</p><p>A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"48 \",\"pages\":\"Article 100776\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157252862300018X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157252862300018X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The polytope of binary sequences with bounded variation
We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length with bounded variation, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary optimal control problems subject to a bounded total variation. We study two variants of the problem. In the first one, the variation of the binary vector is penalized in the objective function, while in the second one, it is bounded by a hard constraint. We show that the first variant is easy to deal with while the second variant turns out to be more complex, but still tractable. For the latter case, we present a complete polyhedral description of the convex hull of feasible solutions by facet-inducing inequalities and devise an exact linear-time separation algorithm. The proof of completeness also yields a new exact primal algorithm with a running time of , which is significantly faster than the straightforward dynamic programming approach. Finally, we devise a compact extended formulation.
A preliminary version of this article has been published in the Proceedings of the 7th International Symposium on Combinatorial Optimization (ISCO 2022) (Buchheim and Hügging, 2022).
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.