{"title":"机器学习从地震反射数据中阐明了埋藏碳酸盐礁的解剖结构","authors":"Priyadarshi Chinmoy Kumar , Kalachand Sain","doi":"10.1016/j.aiig.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>A carbonate build-up or reef is a thick carbonate deposit consisting of mainly skeletal remains of organisms that can be large enough to develop a favourable topography. Delineation of such geologic features provides important input in understanding the basin's evolution and petroleum prospects. Here, we introduce a new attribute called the Reef Cube (RC) meta-attribute that has been computed by fusing several other seismic attributes that are characteristics of the reef through a supervised machine-learning algorithm. The neural learning resulted in a minimum nRMS error of 0.28 and 0.30 and a misclassification percentage of 1.13% and 1.06% for the train and test data sets. The Reef Cube meta-attribute has efficiently captured the anatomy of carbonate reef buried at ∼450 m below the seafloor from high-resolution 3D seismic data in the NW shelf of Australia. The novel approach not only picks up the subsurface architecture of the carbonate reef accurately but also accelerates the process of interpretation with a much-reduced intervention of human analysts. This can be efficiently suited for delimiting any subsurface geologic feature from a large volume of surface seismic data.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 59-67"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning elucidates the anatomy of buried carbonate reef from seismic reflection data\",\"authors\":\"Priyadarshi Chinmoy Kumar , Kalachand Sain\",\"doi\":\"10.1016/j.aiig.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A carbonate build-up or reef is a thick carbonate deposit consisting of mainly skeletal remains of organisms that can be large enough to develop a favourable topography. Delineation of such geologic features provides important input in understanding the basin's evolution and petroleum prospects. Here, we introduce a new attribute called the Reef Cube (RC) meta-attribute that has been computed by fusing several other seismic attributes that are characteristics of the reef through a supervised machine-learning algorithm. The neural learning resulted in a minimum nRMS error of 0.28 and 0.30 and a misclassification percentage of 1.13% and 1.06% for the train and test data sets. The Reef Cube meta-attribute has efficiently captured the anatomy of carbonate reef buried at ∼450 m below the seafloor from high-resolution 3D seismic data in the NW shelf of Australia. The novel approach not only picks up the subsurface architecture of the carbonate reef accurately but also accelerates the process of interpretation with a much-reduced intervention of human analysts. This can be efficiently suited for delimiting any subsurface geologic feature from a large volume of surface seismic data.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"4 \",\"pages\":\"Pages 59-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544123000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544123000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning elucidates the anatomy of buried carbonate reef from seismic reflection data
A carbonate build-up or reef is a thick carbonate deposit consisting of mainly skeletal remains of organisms that can be large enough to develop a favourable topography. Delineation of such geologic features provides important input in understanding the basin's evolution and petroleum prospects. Here, we introduce a new attribute called the Reef Cube (RC) meta-attribute that has been computed by fusing several other seismic attributes that are characteristics of the reef through a supervised machine-learning algorithm. The neural learning resulted in a minimum nRMS error of 0.28 and 0.30 and a misclassification percentage of 1.13% and 1.06% for the train and test data sets. The Reef Cube meta-attribute has efficiently captured the anatomy of carbonate reef buried at ∼450 m below the seafloor from high-resolution 3D seismic data in the NW shelf of Australia. The novel approach not only picks up the subsurface architecture of the carbonate reef accurately but also accelerates the process of interpretation with a much-reduced intervention of human analysts. This can be efficiently suited for delimiting any subsurface geologic feature from a large volume of surface seismic data.