群生产系统中多机器人控制的框架

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Akshay Avhad, Casper Schou, Ole Madsen
{"title":"群生产系统中多机器人控制的框架","authors":"Akshay Avhad,&nbsp;Casper Schou,&nbsp;Ole Madsen","doi":"10.1016/j.compind.2023.103981","DOIUrl":null,"url":null,"abstract":"<div><p>Swarm Production Systems adopt an agile, reconfigurable and flexible production philosophy using mobile robot platforms for workstations and material transport. As a result, the factory floor can continuously restructure itself to an optimal spatial topology suited to any given production mix. This new production paradigm has to deal with frequently changing factory layouts and an execution plan for a fleet of autonomous robots in the planning stage. For every reconfiguration in the event of a change of order, the carrier and process robots require an initial task plan prior to runtime production and a reactive mechanism to adapt to uncertainties on the shop floor. An interoperable management system across the production and robotics domain called the Swarm Manager handles the task planning, allocation and scheduling for process and product transport robots. This research provides conceptualization with an abstract framework and an architecture describing methods with required functionalities for a Swarm Manager. A generic framework based on multi-agent systems addresses the explicit functional scope for individual agents inside the Swarm Manager. Based on the functional needs, a system-level architecture is proposed to explain algorithms within task planning, allocation and scheduling agents, and information flow within them.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for multi-robot control in execution of a Swarm Production System\",\"authors\":\"Akshay Avhad,&nbsp;Casper Schou,&nbsp;Ole Madsen\",\"doi\":\"10.1016/j.compind.2023.103981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Swarm Production Systems adopt an agile, reconfigurable and flexible production philosophy using mobile robot platforms for workstations and material transport. As a result, the factory floor can continuously restructure itself to an optimal spatial topology suited to any given production mix. This new production paradigm has to deal with frequently changing factory layouts and an execution plan for a fleet of autonomous robots in the planning stage. For every reconfiguration in the event of a change of order, the carrier and process robots require an initial task plan prior to runtime production and a reactive mechanism to adapt to uncertainties on the shop floor. An interoperable management system across the production and robotics domain called the Swarm Manager handles the task planning, allocation and scheduling for process and product transport robots. This research provides conceptualization with an abstract framework and an architecture describing methods with required functionalities for a Swarm Manager. A generic framework based on multi-agent systems addresses the explicit functional scope for individual agents inside the Swarm Manager. Based on the functional needs, a system-level architecture is proposed to explain algorithms within task planning, allocation and scheduling agents, and information flow within them.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361523001318\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361523001318","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Swarm生产系统采用敏捷、可重构和灵活的生产理念,使用移动机器人平台进行工作站和材料运输。因此,工厂车间可以不断地将自己重组为适合任何给定生产组合的最佳空间拓扑。这种新的生产模式必须在规划阶段应对频繁变化的工厂布局和自主机器人车队的执行计划。对于订单发生变化时的每一次重新配置,载体和过程机器人都需要在运行时生产之前制定初始任务计划,并需要一个反应机制来适应车间的不确定性。Swarm Manager是一个跨生产和机器人领域的可互操作管理系统,负责处理过程和产品运输机器人的任务规划、分配和调度。这项研究为Swarm Manager提供了一个抽象框架和一个描述方法的体系结构,以及所需的功能。基于多智能体系统的通用框架解决了Swarm Manager中单个智能体的明确功能范围。基于功能需求,提出了一种系统级架构来解释任务规划、分配和调度代理中的算法,以及它们之间的信息流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework for multi-robot control in execution of a Swarm Production System

Swarm Production Systems adopt an agile, reconfigurable and flexible production philosophy using mobile robot platforms for workstations and material transport. As a result, the factory floor can continuously restructure itself to an optimal spatial topology suited to any given production mix. This new production paradigm has to deal with frequently changing factory layouts and an execution plan for a fleet of autonomous robots in the planning stage. For every reconfiguration in the event of a change of order, the carrier and process robots require an initial task plan prior to runtime production and a reactive mechanism to adapt to uncertainties on the shop floor. An interoperable management system across the production and robotics domain called the Swarm Manager handles the task planning, allocation and scheduling for process and product transport robots. This research provides conceptualization with an abstract framework and an architecture describing methods with required functionalities for a Swarm Manager. A generic framework based on multi-agent systems addresses the explicit functional scope for individual agents inside the Swarm Manager. Based on the functional needs, a system-level architecture is proposed to explain algorithms within task planning, allocation and scheduling agents, and information flow within them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信