气顶拆采策略下油环油藏产油量优化模拟研究

IF 4.2 Q2 ENERGY & FUELS
Oluwasanmi Olabode, Pelumi Adewunmi, Odera Uzodinma, Gideon Famurewa, Princess Ogba, Chukwuemeka Amah
{"title":"气顶拆采策略下油环油藏产油量优化模拟研究","authors":"Oluwasanmi Olabode,&nbsp;Pelumi Adewunmi,&nbsp;Odera Uzodinma,&nbsp;Gideon Famurewa,&nbsp;Princess Ogba,&nbsp;Chukwuemeka Amah","doi":"10.1016/j.petlm.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Gas cap blow down strategy is normally deployed for Ultra-thin oil rim reservoirs with huge gas caps due to extremely high gas oil ratios from wells in such reservoirs. The current state leads to loss of production from the oil reserves due to high initial reservoir pressure thus, reducing its net present value. Data on important factors essential to the productivity of oil rim reservoirs are used to build a heterogeneous ultra-thin reservoir with a time step of 10,000 days using the Eclipse software and its embedded correlations. The reservoir is subjected to a gas cap blowdown via a gas well, then an oil well is initiated into the model at onset and after time periods of 2000 days, 4000 days, 6000 days and 8000 days to estimate the oil recovery. It is expected that due to the large nature of the gas cap, pressure decline will be drastic and leading to a low oil recovery, hence the injection of water and gas at different rates at the periods indicated. The results indicate an oil recovery of 4.3% during gas cap blow down and 10.34% at 6000 days. Peak oil recoveries of 12.64% and 10.80% are estimated under 30,000 Mscf/day at 4000 days and 1000 stb/day at 6000 days respectively. This shows an incremental oil recovery of 8.34% and 6.5% over that recorded during gas cap blow down. The results also indicate that the gas production at those periods was not greatly affected with an estimated increment of 257 Bscf recorded during 30,000 Mscf/day at 4000 days. All secondary injection schemes at the respective time steps had positive impact on the overall oil recoveries. It is recommended that extra production and injection wells be drilled, enhanced oil recovery options and injection patterns be considered to further increase oil recovery.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"9 3","pages":"Pages 373-389"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation studies on optimizing oil productivity in oil rim reservoirs under gas cap blow down production strategy\",\"authors\":\"Oluwasanmi Olabode,&nbsp;Pelumi Adewunmi,&nbsp;Odera Uzodinma,&nbsp;Gideon Famurewa,&nbsp;Princess Ogba,&nbsp;Chukwuemeka Amah\",\"doi\":\"10.1016/j.petlm.2022.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gas cap blow down strategy is normally deployed for Ultra-thin oil rim reservoirs with huge gas caps due to extremely high gas oil ratios from wells in such reservoirs. The current state leads to loss of production from the oil reserves due to high initial reservoir pressure thus, reducing its net present value. Data on important factors essential to the productivity of oil rim reservoirs are used to build a heterogeneous ultra-thin reservoir with a time step of 10,000 days using the Eclipse software and its embedded correlations. The reservoir is subjected to a gas cap blowdown via a gas well, then an oil well is initiated into the model at onset and after time periods of 2000 days, 4000 days, 6000 days and 8000 days to estimate the oil recovery. It is expected that due to the large nature of the gas cap, pressure decline will be drastic and leading to a low oil recovery, hence the injection of water and gas at different rates at the periods indicated. The results indicate an oil recovery of 4.3% during gas cap blow down and 10.34% at 6000 days. Peak oil recoveries of 12.64% and 10.80% are estimated under 30,000 Mscf/day at 4000 days and 1000 stb/day at 6000 days respectively. This shows an incremental oil recovery of 8.34% and 6.5% over that recorded during gas cap blow down. The results also indicate that the gas production at those periods was not greatly affected with an estimated increment of 257 Bscf recorded during 30,000 Mscf/day at 4000 days. All secondary injection schemes at the respective time steps had positive impact on the overall oil recoveries. It is recommended that extra production and injection wells be drilled, enhanced oil recovery options and injection patterns be considered to further increase oil recovery.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"9 3\",\"pages\":\"Pages 373-389\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656122000578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656122000578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

气顶放空策略通常用于具有巨大气顶的超薄油缘油藏,因为这些油藏中的井具有极高的气油比。由于初始油藏压力高,目前的状态导致石油储量的产量损失,从而降低了其净现值。利用Eclipse软件及其嵌入式相关性,利用对油缘油藏生产力至关重要的重要因素数据构建了一个时间步长为10000天的非均质超薄油藏。通过气井对储层进行气顶排污,然后在2000天、4000天、6000天和8000天的时间段开始和之后将油井启动到模型中,以估计石油采收率。预计由于天然气盖的巨大性质,压力下降将剧烈,并导致低采收率,因此在所示时期以不同的速率注入水和天然气。结果表明,在气顶放空期间,石油采收率为4.3%,在6000天时为10.34%。4000天和6000天时,峰值石油回收率分别估计在30000 Mscf/天和1000 stb/天以下,分别为12.64%和10.80%。这表明,与天然气盖吹扫期间的记录相比,石油采收率分别增加了8.34%和6.5%。结果还表明,这些时期的天然气产量没有受到太大影响,在4000天的30000 Mscf/天期间,估计增加了257 Bscf。各个时间步长的所有二次注入方案都对整体石油采收率产生了积极影响。建议钻探额外的生产井和注入井,考虑加强采油方案和注入模式,以进一步提高采油率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation studies on optimizing oil productivity in oil rim reservoirs under gas cap blow down production strategy

Gas cap blow down strategy is normally deployed for Ultra-thin oil rim reservoirs with huge gas caps due to extremely high gas oil ratios from wells in such reservoirs. The current state leads to loss of production from the oil reserves due to high initial reservoir pressure thus, reducing its net present value. Data on important factors essential to the productivity of oil rim reservoirs are used to build a heterogeneous ultra-thin reservoir with a time step of 10,000 days using the Eclipse software and its embedded correlations. The reservoir is subjected to a gas cap blowdown via a gas well, then an oil well is initiated into the model at onset and after time periods of 2000 days, 4000 days, 6000 days and 8000 days to estimate the oil recovery. It is expected that due to the large nature of the gas cap, pressure decline will be drastic and leading to a low oil recovery, hence the injection of water and gas at different rates at the periods indicated. The results indicate an oil recovery of 4.3% during gas cap blow down and 10.34% at 6000 days. Peak oil recoveries of 12.64% and 10.80% are estimated under 30,000 Mscf/day at 4000 days and 1000 stb/day at 6000 days respectively. This shows an incremental oil recovery of 8.34% and 6.5% over that recorded during gas cap blow down. The results also indicate that the gas production at those periods was not greatly affected with an estimated increment of 257 Bscf recorded during 30,000 Mscf/day at 4000 days. All secondary injection schemes at the respective time steps had positive impact on the overall oil recoveries. It is recommended that extra production and injection wells be drilled, enhanced oil recovery options and injection patterns be considered to further increase oil recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信